Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1058-1076    https://doi.org/10.11896/cldb.20030039
  无机非金属及其复合材料 |
氮化硼量子点的制备及应用综述
杨璐, 王泽方
天津大学生命科学学院,天津 300072
A Review of Preparation and Application of Boron Nitride Quantum Dots
YANG Lu, WANG Zefang
School of Life Science, Tianjin University, Tianjin 300072, China
下载:  全 文 ( PDF ) ( 26578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化硼量子点是一类新型的零维纳米材料,它具备独特的荧光性能、高导热性、化学稳定性以及良好的生物相容性等出色的理化特性。氮化硼量子点在光电子学、电子元件、传感和催化、生物传感器和生物成像等领域已展现出极为广阔的应用前景,但其高效制备依然面临巨大挑战。因此,探索氮化硼量子点高效制备的新方法并进一步拓展其应用领域是当前纳米材料工程领域新的研究焦点。
   目前,氮化硼量子点的制备可以归纳为“自上而下”和“自下而上”两种方法。其中自上而下法是当前制备的主要方法,此方法类型多样,包括水热法、溶剂热法、超声剥离法以及碱金属插层法等。虽然自上而下法可实现大规模制备氮化硼量子点,但这类方法大都需要有机溶剂、强碱和高温等条件。自下而上的方法利用含有氮和硼元素的前体分子合成氮化硼量子点,可以实现量子点结构的精确控制,但这类方法不适合于大规模制备硼量子点。目前氮化硼量子点的大规模高效制备研究虽然还处在早期阶段,但已有的研究成果为其今后高效大规模的可控制备奠定了基础。同时,以量子点制备工作为基础,许多氮化硼量子点的应用工作也在如火如荼地开展之中,其中包括细胞成像、纤维染色、金属离子检测、化学发光传感器、指纹荧光成像和维生素的检测等,这些应用研究反过来也进一步促进了量子点制备工作的开展。
   本文对近年来氮化硼量子点的制备进行了系统的梳理,并对其在应用领域取得的研究成果进行了总结分析,最后提出了氮化硼量子点的制备及应用研究的思路,以期为后续的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨璐
王泽方
关键词:  氮化硼量子点  自上而下法  自下而上法  生物成像  化学发光传感器    
Abstract: Boron nitride quantum dots area novel type of zero-dimensional nanomaterials, which have outstanding physical and chemical properties such as unique fluorescence, high thermal conductivity, chemical stability, and good biocompatibility. Boron nitride quantum dots have shown extremely broad application prospects in the fields of optoelectronics, electronic components, sensing and catalysis, biosensors, bioimaging, but their efficient preparation is still challenges. Therefore, exploring new methods for the efficient preparation of boron nitride quantum dots and further expanding their application are new research focuses in the field of nanomaterial engineering.
At present, researchers have developed two methods for preparing boron nitride quantum dots, the“top-down” and “bottom-up”. Among them, the “top-down” is currently the primary method to prepare boron nitride quantum dots. There are various types of this method, including hydrothermal method, solvothermal method, ultrasonic method, and alkali metal intercalation method. Although the “top-down” method achieves large-scale preparation of boron nitride quantum dots, most of these methods face the problems of using organic solvents, strong bases, and high temperature conditions. The “bottom-up” method uses precursor molecules containing nitrogen and boron to synthesize boron nitride quantum dots, which can achieve precise control of the structure of quantum dots, but this method is not suitable for large-scale preparation of boron quantum dots. Although the large-scale and efficient preparation of boron nitride quantum dots is still in the early stages, the existing research have laid the foundation for their efficient and large-scale controllable preparation in the future. Based on the preparation of quantum dots, many applications of boron nitride quantum dots are also in full swing, including cell imaging, fiber staining, metal ion detection, chemiluminescence sensors, fingerprint fluorescence imaging, and vitamin detection. These applied studies in turn have further stimulated the preparation of quantum dot.
This review systematically summarizes the preparation of boron nitride quantum dots in recent years, and also comprehensively summarizes and analyzes their application. Finally, we put forward ideas and prospects to promote the preparation and application of boron nitride quantum dots, with a view to provide a reference for subsequent research.
Key words:  boron nitride quantum dots    top-down method    bottom-up method    bioimaging    chemiluminescence sensors
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  O613  
基金资助: 国家自然科学基金(31970048;81601593)
作者简介:  杨璐,2017年6月毕业于东北农业大学,获得理学学士学位。现为天津大学生命科学学院研究生,在王泽方副研究员的指导下进行研究。目前主要的研究领域为蛋白质工程及生物纳米材料。目前已发表SCI论文3篇,申请专利2项。王泽方副研究员于2010年获得南开大学生命科学学院微生物学博士学位,博士在读期间获得国家奖学金在VTT芬兰国家技术研究中心开展中芬联合培养博士研究。2014年底在美国纽约大学医学院完成博士后训练后回国组建课题组。主要从事蛋白质工程和生物活性材料研究。目前主持参与多项国家自然基金、天津市重大创新项目、天津市自然基金和国家重点实验联合基金等多个项科研项目。已在Biosensors & Bioelectronics、Theranostics、ACS Applied Materials & InterfacesCarbon等国际期刊发表研究论文40余篇,并申请30多项国家发明专利。目前担任天津市生物化学与分子生物学会理事、天津大学iGEM合成生物学国际大赛团队导师,并担任两份国际专业期刊编委、十余国际期刊审稿人,多次应邀主持参与国内外会议和报告。
引用本文:    
杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
YANG Lu, WANG Zefang. A Review of Preparation and Application of Boron Nitride Quantum Dots. Materials Reports, 2021, 35(1): 1058-1076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030039  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1058
1 Stagi L, Ren J, Innocenzi P. Materials (Basel),2019,12(23),3905.
2 Sun Z, Xie H, Tang S, et al. Angewandte Chemie International Edition,2015,54(39),11526.
3 Xing C, Huang W, Xie Z, et al. ACS Photonics,2017,5(2),621.
4 Qian H, Dong C, Weng J, et al. Small,2006,2(6),747.
5 Beenakker C W. Physical Review B,1994,50(20),15170.
6 Yamijala S S, Bandyopadhyay A, Pati S K. The Journal of Physical Chemistry C,2013,117(44),23295.
7 Fang Y, Guo S, Li D, et al. ACS Nano,2012,6(1),400.
8 Dai W, Dong H, Fugetsu B, et al. Small,2015,11(33),4158.
9 Medintz I L, Uyeda H T, Goldman E R, et al. Nature Materials,2005,4(4),435.
10 Zhu S, Zhang J, Qiao C, et al. Chemical Communications,2011,47(24),6858.
11 Zhang X, Wang H, Wang H, et al. Advanced Materials,2014,26(26),4438.
12 Mihalache I, Radoi A, Pascu R, et al. ACS Applied Materials & Interfaces,2017,9(34),29234.
13 Hanske C, Sanz-Ortiz M N, Liz-Marzan L M. Advanced Materials,2018,30(27),e1707003.
14 Gu Z, Zhang Y, Luan B, et al. Soft Matter,2016,12(3),817.
15 Tang N, Zhou C, Xu L, et al. ACS Sensors,2019,4(3),726.
16 Yang T, Wei L, Jing L, et al. Angewandte Chemie International Edition,2017,56(29),8459.
17 Chen C, Wang J, Liu D, et al. Nature Communications,2018,9(1),1902.
18 Prakash A, Nehate S D, Sundaram K B. Optics Letters,2016,41(18),4249.
19 Lei W, Mochalin V N, Liu D, et al. Nature Communications,2015,6(4),8849.
20 Peng D, Zhang L, Li F F, et al. ACS Applied Materials & Interfaces,2018,10(8),7315.
21 Zhang W J, Meng X M, Chan C Y, et al. Journal of Physical Chemistry B,2005,109(33),16005.
22 Ko T P, Kuznetsov Y G, Malkin A J, et al. Acta Crystallographica Section D: Biological Crystallography,2001,57(6),829.
23 Pakdel A, Bando Y, Golberg D. Chemical Society Reviews,2014,43(3),934.
24 Corkill J L, Liu A Y, Cohen M L. Physical Review B, Condensed Matter,1992,45(22),12746.
25 Bengu E, Marks L D, Ovali R V, et al. Ultramicroscopy,2008,108(11),1484.
26 Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, et al. Nanomate-rials (Basel),2018,8(9),37.
27 Maruyama M, Okada S. Scientific Reports,2018,8(1),16657.
28 Lin Y, Connell J W. Nanoscale,2012,4(22),6908.
29 Wang X, Sun G, Li N, et al. Chemical Society Reviews,2016,45(8),2239.
30 Kusunose T, Sakayanagi N, Sekino T, et al. Journal of Nanoscience and Nanotechnology,2008,8(11),5846.
31 Li L H, Cervenka J, Watanabe K, et al. ACS Nano,2014,8(2),1457.
32 Zhi C, Xu Y, Bando Y, et al. ACS Nano,2011,5(8),6571.
33 Takahashi L, Takahashi K. Dalton Transactions,2017,46(13),4259.
34 Wang L, Wang Y, Xu T, et al. Nature Communications,2014,5(1),5357.
35 Bao L, Liu C, Zhang Z L, et al. Advanced Materials,2015,27(10),1663.
36 Yang Y, Cui J, Zheng M, et al. Chemical Communications,2012,48(3),380.
37 Liu Q, Guo B, Rao Z, et al. Nano Letters,2013,13(6),2436.
38 Merlo A, Mokkapati V, Pandit S, et al. Biomater Science,2018,6(9),2298.
39 Zhu S, Meng Q, Wang L, et al. Angewandte Chemie International Edition,2013,52(14),3953.
40 Coulon P M, Kusch G, Fletcher P, et al. Materials (Basel),2018,11(7),24.
41 Kim K K, Lee H S, Lee Y H. Chemical Society Reviews,2018,47(16),6342.
42 Kumar R, Singh R K, Yadav S K, et al. Journal of Alloys and Compounds,2016,683(54),38.
43 Li H, Tay R Y, Tsang S H, et al. Small,2015,11(48),6491.
44 Lei Z, Xu S, Wan J, et al. Nanoscale,2015,7(45),18902.
45 Liu M, Xu Y, Wang Y, et al. Advanced Optical Materials,2017,5(3),1600661.
46 Dehghani A, Madadi Ardekani S, Lesani P, et al. ACS Applied Bio Materials,2018,1(4),975.
47 Xue Q, Zhang H, Zhu M, et al. RSC Advances,2016,6(82),79090.
48 Yola M L, Atar N. Biosensors and Bioelectronics,2019,126(84),418.
49 Angizi S, Hatamie A, Ghanbari H, et al. ACS Applied Materials & Interfaces,2018,10(34),28819.
50 Zhu H, Wang X, Li Y, et al. Chemical Communications (Cambridge, England),2009,42(34),5118.
51 Fan L, Zhou Y, He M, et al. Journal of Materials Science,2017,52(23),13522.
52 Li B L, Chen L X, Zou H L, et al. Nanoscale,2014,6(16),9831.
53 Lin L, Xu Y, Zhang S, et al. Small,2014,10(1),60.
54 Jung J H, Kotal M, Jang M H, et al. RSC Advances,2016,6(77),73939.
55 Thangasamy P, Santhanam M, Sathish M. ACS Applied Materials & Interfaces,2016,8(29),18647.
56 Duong N M H, Glushkov E, Chernev A, et al. Nano letters,2019,19(8),5417.
57 Liu B, Yan S, Song Z, et al. Chemistry,2016,22(52),18899.
58 Huo B, Liu B, Chen T, et al. Langmuir,2017,33(40),10673.
59 Ren J, Malfatti L, Enzo S, et al. Journal of Colloid and Interface Science,2020,560(16),398.
60 Zhao H, Ding J, Ji D, et al. Chemistry Select,2019,4(11),3025.
61 Patir K, Gogoi S K. ACS Sustainable Chemistry & Engineering,2017,6(2),1732.
62 Štengl V, Henych J, Kormunda M. Science of Advanced Materials,2014,6(6),1106.
63 Tang Y, Su Y, Yang N, et al. Analytical Chemistry,2014,86(9),4528.
64 Liu Y, Wang M, Nie Y, et al. Analytical Chemistry,2019,91(9),6250.
65 Tan X, Li Y, Li X, et al. Chemical Communications,2015,51(13),2544.
66 Xing H, Zhai Q, Zhang X, et al. Analytical Chemistry,2018,90(3),2141.
67 Milenkovic I, Algarra M, Alcoholado C, et al. Carbon,2019,144(78),791.
[1] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[2] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[3] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[4] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[5] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[6] 闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed