Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22120092-5    https://doi.org/10.11896/cldb.22120092
  多尺度稀土晶体材料及其应用 |
CuO修饰CeO2纳米复合磨料的制备及抛光性能
孙加营1,2,†, 方杨飞1,2,†, 张一波1,2, 刘秋文2, 刘凯杰2, 杨向光1,2,*
1 中国科学技术大学稀土学院,合肥 230026
2 中国科学院赣江创新研究院,江西 赣州 341000
Preparation and Polishing Properties of CuO-modified CeO2 Nanocomposite Abrasives
SUN Jiaying1,2,†, FANG Yangfei1,2,†, ZHANG Yibo1,2, LIU Qiuwen2, LIU Kaijie2, YANG Xiangguang1,2,*
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 4814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用乙二醇溶剂热的方法制备了分散性良好、粒径均一的球形氧化铈抛光粉,并通过浸渍法在氧化铈的表面引入氧化铜(CuO),研究了不同含量CuO对氧化铈的物相结构、比表面积、尺寸、表面形貌、氧化还原能力等的影响,结果表明,在负载范围内,CuO对氧化铈的物相结构、形貌及宏观粒度分布并无明显影响,但其比表面积以及氧化还原能力发生明显的改变。抛光测试结果表明,CuO的引入会明显改变铈基抛光粉的抛光能力。当Cu占Cu和Ce原子摩尔总量的5%时,抛光粉的抛光性能最佳,抛光速率高达213.4 nm/min,抛光后硅片表面的粗糙度仅为0.239 nm(Rq)和0.188 nm(Ra)。通过溶剂热的方法合成的氧化铈抛光粉形貌及尺寸良好,制备方法简单、生产成本低,经过CuO修饰后的氧化铈形貌及尺寸并未发生改变,抛光性能得到较大提升。该策略在提高铈基抛光粉的抛光能力方面具有一定的普适性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙加营
方杨飞
张一波
刘秋文
刘凯杰
杨向光
关键词:  二氧化铈  溶剂热法  表面修饰  化学机械抛光  稀土氧化物    
Abstract: The cerium oxide polishing powder with good dispersion and uniform particle size was prepared by ethylene glycol solvothermal method, and copper oxide (CuO) was introduced on the surface of cerium oxide by impregnation method. The effects of different contents of CuO on the phase structure, specific surface area, size, surface morphology and redox capacity of cerium oxide were studied, and it was found that there was no significant effect on the phase structure, morphology and macroscopic particle size distribution of cerium oxide within the loading range, but the specific surface area and redox capacity changed significantly. The polishing test showed that the introduction of CuO would significantly change the polishing ability of cerium-based polishing powder. When Cu accounts for 5% of the total molar amount of Cu and Ce atoms, the polishing performance was the best, the polishing rate was as high as 213.4 nm/min, and the roughness of the surface of the silicon wafer after polishing was only 0.239 nm (Rq) and 0.188 nm (Ra). The morphology and size of cerium oxide polishing powder synthesized by solvothermal method were fine, and the preparation method was simple and cost-effective. What’s more, the morphology and size of cerium oxide modified by CuO were not changed, and the polishing performance has been greatly improved. This work has certain universality in improving the polishing ability of cerium-based polishing powder.
Key words:  ceria dioxide    solvent thermal method    surface modification    chemical mechanical polishing    rare earth oxide
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TB321  
基金资助: 中国科学院青年创新促进会人才项目(2018263);江西省双千计划(青年)项目(jxsq2020101047);中国科学院重点部署项目(ZDRW-CN-2021-3);中国科学院赣江创新研究院自主部署项目(E055C003)
通讯作者:  *xgyang@gia.cas.cn,方杨飞,2014年6月获得湖南工学院学士学位,2018年6月获得广东工业大学硕士学位,现为中国科学技术大学稀土学院博士研究生,在杨向光教授的指导下进行研究。目前主要研究领域为稀土氧化物功能材料。
杨向光,中国科学院赣江创新研究院教授、博士研究生导师。1984年、1987年、1990年于吉林大学分别获学士、硕士、博士学位。主要从事新型催化材料、机动车尾气净化催化剂、脱硝催化剂、石油裂解催化剂-FCC催化剂,以及电池正极材料等的研究与开发。作为负责人主持国家重点研发计划项目子课题、工信部稀土专项、国家自然科学基金面上项目、吉林省重点科技研发项目、企业横向合作等多项课题。在ACS Catal.、J. Phys. Chem. Lett.、Appl. Catal. A、Chemcatchem 等期刊上发表学术论文100余篇,申请专利20余项,授权15项。   
作者简介:  共同第一作者。孙加营,2020年6月获得山东科技大学工学学士学位,现为中国科学技术大学稀土学院硕士研究生,在杨向光教授的指导下进行研究。目前主要研究领域为氧化铈的可控合成及其硅片的抛光性能研究。
引用本文:    
孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
SUN Jiaying, FANG Yangfei, ZHANG Yibo, LIU Qiuwen, LIU Kaijie, YANG Xiangguang. Preparation and Polishing Properties of CuO-modified CeO2 Nanocomposite Abrasives. Materials Reports, 2023, 37(3): 22120092-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120092  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22120092
1 Patrick W J, Guthrie W L, Standley C L, et al.Journal of the Electrochemical Society, 1991, 138(6), 1778.
2 Su J X. Semiconductor Technology,2003(10), 27(in Chinese).
苏建修. 半导体技术, 2003(10), 27.
3 Li X S. Journal of the Chinese Society of Rare Earths, 2002(5), 392(in Chinese).
李学舜.中国稀土学报, 2002(5), 392.
4 Lee J, Park S H, Hong S, et al. ECS Journal of Solid State Science and Technology, 2021, 10(2), 024001.
5 Kim E, Hong J, Hong S, et al. Materials Chemistry and Physics, 2021, 273, 124967.
6 Chen Y, Li Z, Miao N.Tribology International, 2015, 82, 211.
7 Gao B, Zhai W, Zhai Q, et al. Applied Surface Science, 2019, 484, 534.
8 Chen A, Wang T, Chen Y, et al.Applied Surface Science, 2022, 575, 151784.
9 Liu Z G, Li M, Hu Y H, et al. In: Symposium on Recent Progress in Particuology-10th National Conference on Particle Preparation and Treatment. Kunming, China, 2011, pp.133(in Chinese).
柳召刚, 李梅, 胡艳宏, 等. 颗粒学最新进展研讨会——暨第十届全国颗粒制备与处理研讨会论文集. 昆明, 2011, pp.133.
10 Wu L J, Wang Y S, Guo Y, et al. Journal of the Chinese Society of Rare Earths, 2016,34(5), 606 (in Chinese).
伍立军, 王筠松, 郭耘, 等.中国稀土学报, 2016, 34(5), 606.
11 Jin L, Sun W C, Jiao X Y, et al. Journal of the Chinese Society of Rare Earths, 2010, 28(4), 403(in Chinese).
金靇, 孙戊辰, 焦晓燕, 等.中国稀土学报, 2010, 28(4), 403.
12 Fu M, Wei L, Li Y, et al. Solid State Sciences, 2009, 11(12), 2133.
13 Kim E, Lee J, Bae C, et al. Powder Technology, 2022, 397, 117025.
14 Zhai G, Wang J, Chen Z, et al.Journal of Hazardous Materials, 2019, 363, 214.
15 Wang J, Cheng L, An W, et al. Catalysis Science & Technology, 2016, 6(19), 7342.
16 Shang H, Zhang X, Xu J, et al. Frontiers of Chemical Science and Engineering, 2017, 11(4), 603.
17 Liu Y, Hayakawa T, Suzuki K, et al. Applied Catalysis A: General, 2002, 223(1-2), 137.
18 Chen Y, Zuo C, Chen A. Advanced Powder Technology, 2018, 29(1), 18.
19 Piumetti M, Bensaid S, Russo N, et al. Applied Catalysis B: Environmental, 2015, 165, 742.
20 May Y A, Wang W W, Yan H, et al. Chinese Journal of Catalysis, 2020, 41(6), 1017.
[1] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[2] 孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
[3] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[4] 胡连军, 刘建军, 潘国峰, 曹静伟, 夏荣阳. 钴化学机械抛光的研究进展[J]. 材料导报, 2022, 36(4): 20090178-10.
[5] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[6] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[7] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[8] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[9] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[10] 段鹏, 彭燕, 王希玮, 韩晓桐, 王笃福, 胡小波, 徐现刚. 用于MPCVD金刚石薄膜生长的高表面质量HTHP金刚石的制备[J]. 材料导报, 2021, 35(4): 4034-4037.
[11] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[12] 张先桂, 刘小磐, 高朋召, 廖明雅, 周仁宸. CeO2含量对SiO2-B2O3-ZnO-K2O-BaO系彩釉玻璃基料性能的影响[J]. 材料导报, 2020, 34(22): 22042-22046.
[13] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[14] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[15] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed