Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22042-22046    https://doi.org/10.11896/cldb.19110131
  无机非金属及其复合材料 |
CeO2含量对SiO2-B2O3-ZnO-K2O-BaO系彩釉玻璃基料性能的影响
张先桂1, 刘小磐1, 高朋召1, 廖明雅2, 周仁宸1
1 湖南大学材料科学与工程学院,长沙 410082
2 新型电子元器件关键材料与工艺国家重点实验室,肇庆 526000
Effect of CeO2 Content on Properties of SiO2-B2O3-ZnO-K2O-BaO System Enameled Glass Base Materials
ZHANG Xiangui1, LIU Xiaopan1, GAO Pengzhao1, LIAO Mingya2, ZHOU Renchen1
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 State Key Laboratory of Key Materials and Processes for New Electronic Components, Zhaoqing 526000, China
下载:  全 文 ( PDF ) ( 3213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用熔融法制备了SiO2-B2O3-ZnO-K2O-BaO系彩釉玻璃基料,利用XRD、SEM、综合热分析、高温润湿角测量等手段研究了CeO2添加量对玻璃基料相组成、显微形貌、热膨胀系数、特征温度和与钠钙玻璃的润湿性的影响。研究结果表明:当CeO2的添加量高于3%(质量分数,下同)时,水淬后的玻璃基料样品在700 ℃进行钢化处理后,样品中会有CeO2晶体析出。随着玻璃基料中CeO2添加量的增加,样品的耐酸性、与钠钙玻璃润湿性和抗弯强度都先增强后降低。当CeO2的添加量为1%时,样品与钠钙玻璃的润湿性最好,其润湿角取到最小值45.6°;当CeO2的添加量为3%时,样品在5%(质量分数)的稀硫酸溶液中失重率取到最小值2.83 mg/cm2,玻璃的耐酸性最好;当CeO2的添加量为4%时,样品的抗弯强度最大,为75.69 MPa。结果表明,加入2%CeO2的基料综合性能最优,具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张先桂
刘小磐
高朋召
廖明雅
周仁宸
关键词:  二氧化铈(CeO2)  彩釉玻璃  玻璃基料  膨胀系数  润湿角    
Abstract: The base materials of SiO2-B2O3-ZnO-K2O-BaO enameled glass were prepared by melting method. The effects of CeO2 addition on the phase composition, microstructure, thermal expansion coefficient, characteristic temperature and wettability with soda lime glass were investigated by XRD, SEM, comprehensive thermal analysis and high temperature wetting angle measurement. It was found that when the addition amount of CeO2 was higher than 3wt%, there would be precipitation of CeO2 crystal in the samples after tempering at 700 ℃. With the increase of CeO2 content in the glass matrix, the acid resistance, wettability with soda lime glass and bending strength of the sample increased first and then decreased. When the addition amount of CeO2 was 1wt%, the wettability between the sample and the soda lime glass was the best, and its wettability angle reached the minimum value of 45.6°. When the addition amount of CeO2 was 3wt%, the weight loss rate of the sample in the 5wt% dilute sulfuric acid solution reached the minimum value of 2.83 mg/cm2, and the acid resistance of the glass was the best. When the addition amount of CeO2 was 4wt%, the sample had the best bending resistance, and its strength was 75.69 MPa. The results show that the base material with 2wt% CeO2 has good comprehensive performance and good application prospect.
Key words:  CeO2    enameled glass    glass base materials    expansion coefficient    wetting angle
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TB332  
基金资助: 湖南省重点研发计划(2017GK2254);新型电子元器件关键材料与工艺国家重点实验室开放课题(FHR-JS-201909003)
通讯作者:  liuxiaopanjj@126.com   
作者简介:  张先桂,于2017年9月考入湖南大学攻读硕士学位,主要从事功能玻璃材料的应用研究,重点进行彩釉玻璃基料的研究。刘小磐,湖南大学助理教授。工作期间主持和参加了3项国家重点课题,4项国家级课题,作为首席专家完成了5项省部级和6项长沙市科技计划项目,与企业联合开发新材料项目20余项。发表相关科研论文50余篇,出版专著一部,获授权发明专利5项。主要研究领域是超硬材料工具的开发与功能玻璃材料的制备。
引用本文:    
张先桂, 刘小磐, 高朋召, 廖明雅, 周仁宸. CeO2含量对SiO2-B2O3-ZnO-K2O-BaO系彩釉玻璃基料性能的影响[J]. 材料导报, 2020, 34(22): 22042-22046.
ZHANG Xiangui, LIU Xiaopan, GAO Pengzhao, LIAO Mingya, ZHOU Renchen. Effect of CeO2 Content on Properties of SiO2-B2O3-ZnO-K2O-BaO System Enameled Glass Base Materials. Materials Reports, 2020, 34(22): 22042-22046.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110131  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22042
1 Tong Shuai, Hu Bing, Wang Shuo, et al. Glass, 2014, 41(2),7(in Chinese).童帅, 胡冰, 王烁,等.玻璃, 2014, 41(2),7.2 Xia Weiwen, Wang Debiao. Architectural Glass and Functional Glass, 2010(12), 4(in Chinese).夏卫文, 王德标. 建筑玻璃与工业玻璃, 2010(12),4.3 Kaky K M, Lakshminarayana G, Baki S O, et al. Journal of Non-Crystalline Solids, 2017, 456(15),55.4 Lin P, Lin T, Peng H, et al. Journal of Materials Science Materials in Electronics, 2018, 29(1),232.5 Liu Yuanping, Deng Degang, Wang Huanping, et al. Journal of the Chinese Ceramic Society, 2012, 40(10), 1409(in Chinese).刘远平, 邓德刚, 王焕平,等.硅酸盐学报, 2012, 40(10),1409.6 Feng H, Jun W, Dawei D. Journal of Alloys & Compounds, 2011, 509(21),6332.7 Zhang H, Du Y, Yang X, et al. Journal of Non-Crystalline Solids, 2018, 482,105.8 Geisler T, Janssen A, Scheiter D, et al. Journal of Non-Crystalline Solids, 2010, 356(28),1458.9 Geisler T, Nagel T, Kilburn M R, et al. Geochimica Et Cosmochimica Acta, 2015, 158,112.10 Shu M, Yin H, Zhong Q, et al. Surface Review and Letters, 2017, 24(3),1750036.11 Liu X P, Qiao A, Wan L, et al. Journal of Wuhan University of Techno-logy-Mater Sci Ed, 2014, 29(1),19.12 Yu Yangxin. Journal of Engineering Thermophysics, 2012, 33(9), 1483(in Chinese).于养信.工程热物理学报, 2012, 33(9),1483.13 Li M, Wang M, Wang M T, et al. Advanced Materials Research, 2013, 683,42.14 Han L, Song J, Zhang Q, et al. Silicon, 2018, 10,2685.15 Pei S, Fen W, Zhu J, et al. Ceramics International, 2018, 44(14),16407.16 Virga E, Spruijt E, Vos W M D, et al. Langmuir, 2018, 34(50),15174.17 Cheng C, Li H, Fu Q, et al. Computational Materials Science, 2018, 147,81.18 Iyer H, Khajavi L T, Durlik D, et al. Silicon, 2018, 10(5), 2219.19 DAI C, Ji X B, Zhou D D, et al. Journal of Zhejiang University(Engineering Science), 2017, 52(1),36.20 Wang Z, Cheng L. Journal of Alloys & Compounds, 2014, 597(11),167.21 Zhou H L, Feng K Q, Chen C H, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(6),689.22 Zhu Q, Wang H, Gao R, et al. Journal of the Chinese Ceramic Society, 2017, 45(10),1510.
[1] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[2] 刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
[3] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[4] 杜文博, 姚正军, 陶学伟, 罗西希. 钛合金表面梯度Al2O3陶瓷涂层的高温抗氧化性能*[J]. 《材料导报》期刊社, 2017, 31(14): 57-60.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed