Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22120058-12    https://doi.org/10.11896/cldb.22120058
  多尺度稀土晶体材料及其应用 |
二氧化铈负载型催化剂的研究进展
孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林*
浙江工业大学化学工程学院工业催化研究所,杭州 310014
Research Progress of Cerium Dioxide Supported Catalyst
SUN Fuli, ZHANG Wei, YU Yifan, SHENG Yinxiao, ZHUANG Guilin*
Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
下载:  全 文 ( PDF ) ( 10589KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,全球能源结构转型正在加快构建绿色、安全、可持续的发展局面。而能源转换是其中的重中之重。高效催化剂的探究是解决这一难题的重要分支。二氧化铈(CeO2)作为一种稀土氧化物催化剂或多相催化剂载体,具备独特的几何、电子结构性质 (如富含氧空位、Ce价态互变(Ce3+↔Ce4+)等),可通过有效调控催化剂几何和电子效应来影响催化性能。近年来,CeO2基负载型催化剂在化工、能源、环境、材料等领域已被广泛探究应用,有效助力解决能源转换、环境污染等问题。虽然已有研究者对CeO2负载型催化剂进行了综述,但是主要集中在单一催化方向(如电催化、热催化),缺乏系统概述。本文从两方面总结CeO2基负载型催化剂的研究进展:(1)CeO2以及CeO2基负载型催化剂的制备合成方法;(2)CeO2各类催化剂在电催化、光催化、热催化、光热催化多个催化领域的构效研究。全面综述CeO2负载型催化剂将有助于其在各个领域的实际应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙富丽
张炜
俞一帆
盛殷笑
庄桂林
关键词:  二氧化铈  制备  催化  构效关系    
Abstract: At present, the transformation of the global energy structure is accelerating the construction of green, safe and sustainable development. The energy conversion is one of the most important. The exploration of efficient catalyst is an important branch to solve this problem. Cerium dioxide(CeO2), as a rare earth oxide catalyst or an excellent carrier of heterogeneous catalysts, has unique geometric and electronic structural properties (such as rich oxygen site, Ce valence tautomization(Ce3+↔Ce4+), etc.), which can effectively affect the performance of catalysts through geometric and electronic effects. In recent years, CeO2-based supported catalysts have been widely explored and applied in chemical, energy, environment, materials and other fields, effectively helping to solve urgent problems such as energy conversion, environmental pollution. Although there have been reviews on CeO2-based supported catalysts, they mainly focus on single catalytic directions(such as electrocatalysis or thermal catalysis)and lack a systematic overview. In this paper, the research progress of CeO2-based supported catalysts is summarized from two aspects: (Ⅰ) preparation and synthesis of CeO2 and CeO2-based supported catalysts; (Ⅱ) study on the structure-activity of various CeO2 catalysts in electrocatalysis, photocatalysis, thermal catalysis and photothermal catalysis. A comprehensive review of CeO2-based supported catalysts will be helpful for its practical application in various fields.
Key words:  cerium dioxide    preparation    catalysis    structure-activity relationship
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O613  
基金资助: 国家自然科学基金(22072135);浙江省自然科学基金(LR19B010001);浙江中烟工业有限责任公司基金(ZJZY2019C001);山东省自然科学基金(ZR2020ZD35)
通讯作者:  *glzhuang@zjut.edu.cn,庄桂林,浙江工业大学化学工程学院教授、博士研究生导师,国家优秀青年科学基金、浙江省杰出青年基金获得者。分别于2005年和2010年在厦门大学化学系获得学士、博士学位;毕业后加盟浙江工业大学化工学院工业催化学科工作至今; 2018年在比利时荷语鲁汶大学表面化学与催化研究中心访学交流。目前主要从事团簇基材料构效(磁构、催构)关系研究。迄今,以通信作者(含共同)或第一作者(含共同)在 J. Am. Chem. Soc.、Angew. Chem.、Nat.Sci. Rev.、Nat.Commun. 等期刊发表学术论文数十篇;获得授权专利四项、软件著作权两项。   
作者简介:  孙富丽,2020年6月于滨州学院获工学学士学位。现为浙江工业大学化学工程学院硕博连读研究生,在庄桂林教授的指导下进行研究。目前主要从事负载型催化剂光催化CO2还原的理论研究。
引用本文:    
孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
SUN Fuli, ZHANG Wei, YU Yifan, SHENG Yinxiao, ZHUANG Guilin. Research Progress of Cerium Dioxide Supported Catalyst. Materials Reports, 2023, 37(3): 22120058-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120058  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22120058
1 Ross M B, Luna P D, Li Y, et al. Nature Catalysis, 2019, 2, 648.
2 Zhao W, Li J, He C, et al. Catalysis Today, 2010, 158, 427.
3 Shao M, Chang Q, Dodelet J P, et al. Chemical Reviews, 2016, 116, 3594.
4 Han F, Kambala V S R, Srinivasan M, et al. Applied Catalysis A: Gene-ral, 2009, 359, 25.
5 Gao D, Zhang Y, Zhou Z, et al. Journal of the American Chem, Stryical Society, 2017, 139, 5652.
6 Yang W, Wang X, Song S, et al. Chemistry, 2019, 5, 1743.
7 Ma R, Zhang S, Wen T, et al. Catalysis Today, 2019, 335, 20.
8 Wen Y, Huang Q, Zhang Z, et al. Chinese Journal of Chemistry, 2022, 40, 1856.
9 Yang C, Lu Y, Zhang L, et al. Small Structures, 2021, 2, 2100058.
10 Liu H, Park J, Chen Y, et al. ACS Catalysis, 2021, 11, 8431.
11 Paun C, Safonova O V, Szlachetko J, et al. The Journal of Physical Chemistry C, 2012, 116, 7312.
12 Wang Z, Feng X. Journal of Physical Chemistry B, 2003, 107, 13563.
13 Si R, Flytzani-Stephanopoulos M. Angewandte Chemie, 2008, 120, 2926.
14 Tok A I Y, Boey F Y C, Dong Z, et al. Journal of Materials Processing Technology, 2007, 190, 217.
15 Panahi-Kalamuei M, Alizadeh S, Mousavi-Kamazani M, et al. Journal of Industrial and Engineering Chemistry, 2015, 21, 1301.
16 Chen J, Jiang M, Chen J, et al. Journal of Hazardous Materials, 2020, 392, 122511.
17 Li L, Song L, Wang H, et al. International Journal of Hydrogen Energy, 2011, 36, 8839.
18 Chang H Y, Chen H I. Journal of Crystal Growth, 2005, 283, 457.
19 Wang R G, Dangerfield R. RSC Advances, 2014, 4, 3615.
20 Gnanam V, Rajendran S. Journal of Nanoparticles, 2013, 2013, 839391.
21 Tsai Y C, Kwon E, Park Y K, et al. Separation and Purification Techno-logy, 2022, 281, 119867.
22 Ramachandran M, Subadevi M, Sivakumar R. Vacuum, 2019, 161, 220.
23 Shibeshi P T, Parajuli D, Murali N. Chemical Physics, 2022, 561, 111617.
24 Phonthammachai N, Rumruangwong M, Gulari E, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 247, 61.
25 Ahmed H E, Iqbal Y, Aziz M H, et al. Molecules, 2021, 26, 4659.
26 Yulizar Y, Juliyanto S, Sudirman, et al. Journal of Molecular Structure, 2021, 1231, 129904.
27 Li G R, Xu H, Lu X F, et al. Nanoscale, 2013, 5, 4056.
28 Lu X H, Huang X, Xie S L, et al. Langmuir, 2010, 26, 7569.
29 Zhang C, Zhang X, Wang Y, et al. New Journal of Chemistry, 2014, 38, 2581.
30 Lin L, Ma X, Li S, et al. Frontiers of Chemical Science and Engineering, 2019, 13, 501.
31 Yin L, Wang Y, Pang G, et al. Journal of Colloid and Interface Science, 2002, 246, 78.
32 Pinjari D V, Pandit A B. Ultrasonics Sonochemistry, 2011, 18, 1118.
33 Mousavi-Kamazani M, Ashrafi S. Ultrasonics Sonochemistry, 2020, 63, 104948.
34 Wang H, Li Y, Zhang Y, et al. Powder Technology, 2015, 273, 191.
35 Wang L, Liu H, Liu Y, et al. Journal of Rare Earths, 2013, 31, 969.
36 Cheng N, Zhang L, Doyle-Davis K, et al. Electrochemical Energy Reviews, 2019, 2, 539.
37 Chen F, Li T, Pan X, et al. Science China Materials, 2019, 63, 959.
38 Zhang S, Chang C R, Huang Z Q, et al. Journal of the American Chemical Society, 2016, 138, 2629.
39 Daelman N, Capdevila-Cortada N, Lopez M. Nature Materials, 2019, 18, 1215.
40 Zheng K, Li Y, Liu B, et al. Angewandte Chemie-International Edition in English, 2022, 61, 202210991.
41 Tang Y, Wei Y, Wang Z, et al. Journal of the American Chemical Society, 2019, 141, 7283.
42 Ji W, Wang N, Chen X, et al. Inorganic Chemistry, 2022, 61, 10006.
43 Xiang Y, He J, Sun N, et al. Microporous and Mesoporous Materials, 2020, 308, 110507.
44 Chen B B, Shi C, Crocker M, et al. Applied Catalysis B: Environmental, 2013, 132-133, 245.
45 Hu B, Sun K, Zhuang Z, et al. Advanced Materials, 2022, 34, 2107721.
46 Qi G, Yang R T, Chang R. Applied Catalysis B: Environmental, 2004, 51, 93.
47 Chen C H, Yu B T, Wei L S, et al. Chemical Engineering Journal, 2021, 409, 128168.
48 Jiang D, Yao Y, Li T, et al. Angewandte Chemie-International Edition in English, 2021, 60, 26054.
49 Lin F, Hoang D T, Tsung C K, et al. Nano Research, 2010, 4, 61.
50 Tao X, Long R, Wu D, et al. Small, 2020, 16, 2001782.
51 Tao Q, Song J, Sun N, et al. Inorganic Chemistry, 2022, 61, 11932.
52 Zhang L, Ren X, Guo X, et al. Inorganic Chemistry, 2018, 57, 548.
53 Zhang R, Ren X, Hao S, et al. Journal of Materials Chemistry A, 2018, 6, 1985.
54 Sun Z, Zhang J, Xie J, et al. Inorganic Chemistry Frontiers, 2018, 5, 3042.
55 Sun H, Tian C, Fan G, et al. Advanced Functional Materials, 2020, 30, 1910596.
56 Demir E, Akbayrak S, Onal A M, et al. ACS Applied Materials Interfaces, 2018, 10, 6299.
57 Long X, Lin H, Zhou D, et al. ACS Energy Letters, 2018, 3, 290.
58 Xiao Y, Wang W, Wu Q. International Journal of Hydrogen Energy, 2020, 45, 3948.
59 Li J, Xia Z, Xue Q, et al. Small, 2021, 17, 2103018.
60 Zhang N, Jalil A, Wu D, et al. Journal of the American Chemical Society, 2018, 140, 9434.
61 Li H, Shang J, Ai Z, et al. Journal of the American Chemical Society, 2015, 137, 6393.
62 Hirakawa H, Hashimoto M, Shiraishi Y, et al. Journal of the American Chemical Society, 2017, 139, 10929.
63 Xu B, Xia L, Zhou F, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 2889.
64 Xie H, Wang H, Geng Q, et al. Inorganic Chemistry, 2019, 58, 5423.
65 Chu K, Cheng Y H, Li Q Q, et al. Journal of Materials Chemistry A, 2020, 8, 5865.
66 Liu Y, Li C, Guan L, et al. The Journal of Physical Chemistry C, 2020, 124, 18003.
67 Zeng J, Xu L, Luo X, et al. Physical Chemistry Chemical Physics, 2021, 23, 2812.
68 Xu L, Huang W Q, Wang L L, et al. ACS Applied Materials Interfaces, 2014, 6, 20350.
69 Wu D, Liu S, Zhong M, et al. ACS Catalysis, 2022, 12, 12253.
70 Wang Y, Chen Z, Han P, et al.ACS Catalysis, 2018, 8, 7113.
71 Wu D, Dong C, Wu D, et al. Journal of Materials Chemistry A, 2018, 6, 9373.
72 Tian Y, Fei X, Ning H, et al. Frontiers in Chemistry, 2022, 10, 915759.
73 Zhang Q, Du J, He A, et al. Journal of Solid State Chemistry, 2019, 279, 120946.
74 Cui X, Liu Z, Li G, et al. International Journal of Hydrogen Energy, 2019, 44, 23921.
75 Yu H, Xu J, Yin C, et al. Journal of Solid State Chemistry, 2019, 272, 102.
76 Zheng N C, Ouyang T, Chen Y, et al. Catalysis Science & Technology, 2019, 9, 1357.
77 Ma Y, Bian Y, Liu Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 2552.
78 Wang Y, Hao X, Zhang L, et al. Energy & Fuels, 2020, 34, 2599.
79 Li M, Zhang L, Wu M, et al. Nano Energy, 2016, 19, 145.
80 Zheng J, Zhu Z, Gao G, et al. Catalysis Science & Technology, 2019, 9, 3788.
81 Liang M, Borjigin T, Zhang Y, et al. Applied Catalysis B: Environmental, 2019, 243, 566.
82 Seeharaj P, Kongmun P, Paiplod P, et al. Ultrasonics Sonochemistry, 2019, 58, 104657.
83 Tran D P H, Pham M T, Bui X T, et al. Solar Energy, 2022, 240, 443.
84 Xing Y, Wang C, Li D, et al. Advanced Functional Materials, 2022, 32, 2207694.
85 Tanaka A, Hashimoto K, Kominami H. Chemistry Letters, 2011, 40, 354.
86 Zhou Y, Xi W, Xie Z, et al. Chemistry—An Asian Journal, 2021, 16, 2622.
87 Huang X, Zhang K, Peng B, et al. ACS Catalysis, 2021, 11, 9618.
88 Ciriminna R, Pandarus V, Béland F, et al. Organic Process Research & Development, 2015, 19, 1554.
89 Liu J, Wu X P, Zou S, et al. The Journal of Physical Chemistry C, 2014, 118, 24950.
90 Hao J, Long Z, Sun L, et al. Inorganic Chemistry, 2021, 60, 7732.
91 Liu Z, Zhang S, Li J, et al. Applied Catalysis B: Environmental, 2014, 144, 90.
92 Wang H, Chen X, Weng X, et al. Catalysis Communications, 2011, 12, 1042.
93 Ahmed W, Awadallah A E, Aboul-Enein A A. International Journal of Hydrogen Energy, 2016, 41, 18484.
94 Hossain M A, Ayodele B V, Ong H R, et al. International Journal of Energy Research, 2020, 44, 6325.
95 Deng B, Song H, Peng K, et al. Applied Catalysis B: Environmental, 2021, 298, 120519.
96 Golovanova V, Spadaro M C, Arbiol J, et al. Applied Catalysis B: Environmental, 2021, 291, 120038.
97 Pan F, Xiang X, Deng W, et al. ChemCatChem, 2018, 10, 940.
98 Du Z, Pan F, Yang X, et al. Catalysis Today, 2023, 409, 31.
99 Zeng M, Li Y, Mao M, et al. ACS Catalysis, 2015, 5, 3278.
100 Kong J, Li G, Wen M, et al. Journal of Catalysis, 2019, 370, 88.
101 Borjigin B, Ding L, Li H, et al. Chemical Engineering Journal, 2020, 402, 126070.
102 Feng Y, Dai L, Wang Z, et al. Environmental Science and Technology, 2022, 56, 8722.
[1] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[2] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[3] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[4] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[5] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[6] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[7] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[8] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[9] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[10] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[11] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[12] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[13] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[14] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[15] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed