Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21020061-7    https://doi.org/10.11896/cldb.21020061
  金属与金属基复合材料 |
脱合金化法制备纳米多孔铂合金的研究进展
杨亚苹, 李艳辉*, 张伟*
大连理工大学材料科学与工程学院,辽宁 大连 116024
Research Progress in Nanoporous Pt Alloys Prepared by Dealloying
YANG Yaping, LI Yanhui*, ZHANG Wei*
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024,Liaoning, China
下载:  全 文 ( PDF ) ( 15680KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米多孔金属由纳米尺度的孔隙和金属韧带组成,具有三维双连通的网络状结构,兼具纳米材料和金属材料的双重特性,在催化、传感和药物输送等领域具有广阔的应用前景。脱合金化法操作简单,工艺流程短,成本相对较低,是制备纳米多孔金属的常用方法。目前,利用脱合金化法制备的纳米多孔Pt合金因其对甲醇氧化和氧还原反应具有优异的催化活性而备受关注,有望在燃料电池等相关领域实现应用。
   近年,研究学者不断丰富纳米多孔Pt合金的合金体系,通过优化合金成分和脱合金化工艺对其结构和性能进行调控,发展出多种形态的纳米多孔Pt合金,系统调查了前驱体的结构和成分、脱合金工艺参数对纳米多孔Pt合金的组织结构、形貌和性能的影响,并对纳米多孔形成和优异性能的机理进行了广泛的研究。
   利用脱合金化法制备的纳米多孔Pt合金具有多种形态,如低维的纳米颗粒、纳米花、纳米线和薄膜以及三维的纳米多孔带材等。低维的纳米多孔Pt合金因其更大的比表面积和纳米尺寸效应而具有更为突出的催化活性,而三维的纳米多孔带材具有均匀的纳米多孔结构,且克服了低维合金易团聚的问题。通过调整前驱体合金的化学成分和组织结构,改变脱合金化工艺参数,以及对纳米多孔合金进行退火处理等手段实现了对纳米多孔Pt合金的结构和形貌的有效控制。纳米多孔Pt合金对甲醇氧化和氧还原反应的催化性能相比于商用负载型Pt/C具有较大程度的改善。磁性纳米多孔Pt合金可将催化和磁分离相结合,易实现催化剂的回收再利用。此外,磁性纳米多孔Pt合金在过滤和药物输送等方面也具有巨大应用潜力。
   本文主要从脱合金工艺及其机制、制备与结构调控,以及性能与应用等方面简述了近年脱合金化法制备的纳米多孔Pt合金的研究进展,并探讨了目前存在的问题和今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨亚苹
李艳辉
张伟
关键词:  纳米多孔金属  纳米多孔Pt合金  脱合金化法  催化性能  磁性能    
Abstract: Nanoporous metals are composed of nano-sized pores and metal ligaments, and have a three-dimensional interpenetrating ligament-channel architecture. They possess dual characteristics of nano-materials and metal materials, and exhibit broad application prospects in the fields of catalysis, sensing, drug delivery, and so forth. Dealloying is one of the most popular methods for preparing the nanoporous alloys because of its simple operation, short process flow and relatively low cost. At present, nanoporous Pt alloys prepared by the dealloying method have attracted considerable attention due to their excellent catalytic activity for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR), which are expected to be applied in fuel cells and other related fields.
In recent years, researchers have diversified the nanoporous Pt alloy systems, tailored and controlled the structure and performance by optimizing the alloy composition and dealloying process, and developed a variety of forms of the nanoporous Pt alloys. The influences of the structure and composition of the precursors and dealloying process parameters on the microstructure, morphology and properties of the nanoporous Pt alloys have been systematically investigated, and the mechanisms of the nanoporous formation and excellent properties have been studied extensively.
The nanoporous Pt alloys developed by the dealloying has a variety of forms, such as low-dimensional nanoparticles, nano-flowers, nanowires and films, along with three-dimensional nanoporous ribbons. The low-dimensional nanoporous Pt alloys exhibit outstanding catalytic activity due to high specific surface area and nano-size effect, while the three-dimensional nanoporous ribbons have a uniform nanoporous structure and can overcome the agglomeration of the low-dimensional alloys. The effective tailoring and control of the nanoporous structure and morphology have been achieved by adjusting the chemical composition and structure of the precursor alloys, changing the dealloying process parameters, and annealing the nanoporous alloys. In comparison with commercial supported Pt/C, the catalytic performance on the MOR and ORR of the nanoporous Pt alloys is superior. The magnetic nanoporous Pt alloys can combine catalysis and magnetic separation to realize the easy recovery and reuse of the catalysts. In addition, the magnetic nanoporous Pt alloys also have huge application potential in filtration and drug delivery.
In this paper, we have reviewed the research progress in the nanoporous Pt alloys from the aspects of dealloying process and its mechanism, preparation and structure control, as well as properties and applications, and have discussed the current problems and future development orientations of the nanoporous Pt alloys.
Key words:  nanoporous metal    nanoporous Pt alloy    dealloying    catalytic property    magnetic property
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TG146.3  
基金资助: 国家自然科学基金(51771039; 51871039)
通讯作者:  *yhli@dlut.edu.cn;wzhang@dlut.edu.cn,李艳辉,大连理工大学材料科学与工程学院副教授、博士研究生导师。2005年本科毕业于合肥工业大学材料物理专业,2011年获大连理工大学工学博士学位。2011—2015年任大连理工大学讲师,2015年起任现职。主要研究领域为非晶/纳米晶软磁合金、块体非晶合金及其复合材料、高熵功能合金等。已发表SCI收录论文70余篇,被引用1 100余次;获国内外发明专利16项。
张伟,大连理工大学材料科学与工程学院教授、博士研究生导师。1983年本科毕业于大连理工大学金属材料专业,1986年于大连理工大学获铸造专业硕士学位;1998年在日本东北大学获材料加工学博士学位,1998—2004年任日本科技技术振兴机构研究员;2004—2017年任日本东北大学金属材料研究所副教授、客座教授; 2011年任现职。主要研究领域为非晶态合金及其复合材料,磁性材料及纳米材料等。已发表SCI收录论文280余篇,被引用9 000余次(H因子50);合著专著5部;获国内外发明专利20余项。   
作者简介:  杨亚苹,2018年6月毕业于大连理工大学功能材料专业。现为大连理工大学材料科学与工程学院硕士研究生,在李艳辉副教授的指导下进行研究。目前主要研究领域为Ru(Fe,Co)系纳米多孔合金的制备及催化性能研究。
引用本文:    
杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
YANG Yaping, LI Yanhui, ZHANG Wei. Research Progress in Nanoporous Pt Alloys Prepared by Dealloying. Materials Reports, 2023, 37(3): 21020061-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020061  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21020061
1 Forty A J.Nature, 1979, 282, 597.
2 Xu Y, Wang L, Yu S, et al.Hot Working Technology, 2021, 50(10), 12 (in Chinese).
徐云浩, 王岚, 余森, 等. 热加工工艺, 2021, 50(10), 12.
3 Mao R, Liang S, Wang X, et al.Corrosion Science, 2012, 60, 231.
4 Zuo L, Li R, Jin Y, et al.Journal of the Electrochemical Society, 2017, 164, A348.
5 Jayaraj J, Park B, Kim D, et al.Scripta Materialia, 2006, 55, 1063.
6 Scaglione F, Alladio E, Damin A, et al.Sensors and Actuators B: Chemical, 2019, 288, 460.
7 Jin Y, Li R, Zuo L, et al.Journal of Alloys and Compounds, 2017, 695, 1600.
8 Zeng Y Q, Yang S C, Xiang H, et al.Intermetallics, 2015, 61, 66.
9 Xu C, Li Q, Liu Y, et al.Langmuir, 2012, 28, 1886.
10 Zheng J, Li X, Lu G, et al.Materials Reports B: Research Papers, 2018, 32(8), 2828 (in Chinese)
郑继波, 李雪, 卢公昊, 等.材料导报:研究篇, 2018, 32(8), 2828.
11 Kim Y S, Pickering H W.Metallurgical Transactions B-Process Metallurgy, 1982, 13, 349.
12 Pugh D V, Dursun A, Corcoran S G.Journal of Materials Research, 2011, 18, 216.
13 Ding Y.Journal of Shandong University(Natural Science), 2011, 46(10), 121 (in Chinese).
丁轶.山东大学学报(理学版), 2011, 46(10), 121.
14 Erlebacher J, Aziz M J, Karma A, et al.Nature, 2001, 410, 450.
15 Yu X, Li Y, Yuan B.Materials Reports A: Review Papers, 2015, 29(8), 134 (in Chinese).
禹贤斌, 李永喜, 袁斌.材料导报:综述篇, 2015, 29(8), 134.
16 Pickering H W, Wagner C.Journal of the Electrochemical Society, 1967, 114, 698.
17 Sieradzki K, Corderman R R, Shukla K, et al.Philosophical Magazine A, 1989, 59, 713.
18 Erlebacher J.Journal of the Electrochemical Society, 2004, 151, C614.
19 Xu C, Liu Y, Hao Q, et al.Journal of Materials Chemistry A, 2013, 1,13542.
20 Ou S, Ma D, Li Y, et al. Journal of Alloys and Compounds, 2017, 706, 215.
21 Ma D, Wang Y, Li Y, et al.Journal of Materials Science & Technology, 2020, 36, 128.
22 Snyder J, McCue I, Livi K, et al.Journal of the American Chemical Society, 2012, 134, 8633.
23 Baldizzone C, Gan L, Hodnik N, et al.ACS Catalysis, 2015, 5, 5000.
24 McCue I, Snyder J, Li X, et al.Physical Review Letters, 2012, 108, 225503.
25 Zhou Q, Qi L, Yang H, et al.Journal of Colloid and Interface Science, 2018, 513, 258.
26 Liu L F, Pippel E, Scholz R, et al.Nano Letters, 2009, 9, 4352.
27 Shui J L, Chen C , Li J C M. Advanced Functional Materials, 2011, 21, 3357.
28 Qiu H J, Gao J J, Chiang F K, et al.Journal of Materials Chemistry A, 2018, 6, 12541.
29 Thorp J C, Sieradzki K, Tang L, et al.Applied Physics Letters, 2006, 88, 033110.
30 Kim S H, Choi J B, Nguyen Q N, et al.Physical Chemistry Chemical Physics, 2013, 15, 5782.
31 Zhang Z, Wang Y, Wang X.Nanoscale, 2011, 3, 1663.
32 Ma D G. Fabrication and properties of magnetic nanoporous metals by dealloying Fe-Pt-B alloys. Ph.D. Thesis, Dalian University of Technology, China, 2019 (in Chinese).
马殿国.Fe-Pt-B合金脱合金化制备磁性纳米多孔材料及其性能研究. 博士学位论文, 大连理工大学, 2019.
33 Xu C, Hou J, Pang X, et al.International Journal of Hydrogen Energy, 2012, 37, 10489.
34 Lee D, Jang H Y, Hong S, et al.Journal of Colloid and Interface Science, 2012, 388, 74.
35 Zhang X, Li G, Duan D, et al.Corrosion Science, 2018, 135, 57.
36 Zhang W, Ma D, Wang Y, et al.Scripta Materialia, 2019, 162, 5.
37 Xu C, Wang L, Mu X, et al.Langmuir, 2010, 26, 7437.
38 Xu C, Hou J, Pang X, et al.International Journal of Hydrogen Energy, 2012, 37, 10489.
39 Xu X, Li Y, Zhang W.Acta Metallurgica Sinica, 2020, 56(10), 1393 (in Chinese).
徐秀月, 李艳辉, 张伟.金属学报, 2020, 56(10), 1393.
40 Wang J, Holt-Hindle P, MacDonald D, et al.Electrochimica Acta, 2008, 53, 6944.
41 Hwang C K, Kim J M, Hwang S, et al.Advanced Materials Interfaces, 2019, 6, 1901326
42 Fuchigami T, Kawamura R, Kitamoto Y, et al.Biomaterials, 2012, 33, 1682.
43 Fuchigami T, Kawamura R, Kitamoto Y, et al.Langmuir, 2011, 27, 2923.
[1] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[2] 郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
[3] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[4] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[5] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[6] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[7] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[8] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[9] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[10] 毛韦达, 赵林. 溶胶凝胶法合成La0.5Sr0.5Co0.8Mn0.2O3-δ钙钛矿及其催化性质[J]. 材料导报, 2021, 35(24): 24001-24005.
[11] 刘元军, 王翊, 侯硕, 武翔, 赵晓明. 功能粒子种类对涂层涤棉织物电磁性能的影响[J]. 材料导报, 2021, 35(24): 24177-24181.
[12] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[13] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[14] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[15] 程灵, 韩钰, 马 光, 孟利, 杨富尧, 陈新, 董瀚. 特高压直流换流阀饱和电抗器用超薄取向硅钢涂层制备与性能评估[J]. 材料导报, 2020, 34(18): 18139-18144.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed