Plasma Made Pt-Ni/N-doped Reduced Graphene Oxide with Enhanced Electrocatalytic Activity for Methanol Oxidation
CHEN Changle1,2,, PI Xiaohu2,3,, MIAO Yuanling1,2, SUN Xuxu1,2, ZHAN Furu3, WANG Qi1,2,*, KOSTYA (KEN) Ostrikov4
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2 University of Science and Technology of China,Hefei 230026, China 3 Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 4 School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia
Abstract: To address the problem of the high cost and low catalytic activity of platinum-carbon-based (Pt/C) catalysts in power sources based on direct methanol fuel cells, we developed the high-performance Pt-Ni bimetallic methanol oxidation catalyst supported on N-doped reduced graphene oxide (Pt-Ni/NrGO). Nitrogen is doped into graphene through inductively coupled plasma process using a mixture of H2 and N2 gases to create defects and active sites to promote the dispersion of metal particles and reduce the particle size. Compared with the sample without nitrogen doping and the commercial Pt/C, the Pt-Ni/NrGO catalyst exhibits better catalytic activity, stability, and reduced poisoning effect in the methanol oxidation reaction. This low-temperature plasma approach is energy-efficient and environment-friendly and provides a new route for the synthesis of advanced functional nanomaterials with the desired properties.
1 Chen Y, Lin Y, Zhang Y X, et al. Nano Energy, 2014, 8, 25. 2 Chen Y, Zhang Y X, Lin Y, et al. Nano Energy, 2014, 10, 1. 3 Xiao G L, Chen F L. Electrochemistry Communications 2011, 13(1), 57. 4 Yang C H, Yang Z B, Jin C, et al. Advanced Materials, 2012, 24(11), 1439. 5 Kakati N, Maiti J, Lee S H, et al. Chemical Reviews, 2014, 114(24), 12397. 6 Liu J W, Ma Q L, Huang Z Q, et al. Advanced Materials, 2019, 31(9), 1800696. 7 Tiwari J N, Tiwari R N, Singh G, et al. Nano Energy, 2013, 2(5), 553. 8 Antolini E. Applied Catalysis B-Environmental, 2016, 181, 298. 9 Hamnett A. Catalysis Today, 1997, 38(4), 445. 10 Chen A C, Holt-Hindle P. Chemical Reviews, 2010, 110(6), 3767. 11 Zhou W J, Song S Q, Li W Z, et al. Solid State Ionics, 2004, 175(1-4), 797. 12 Sakong S, Gross A. ACS Catalysis, 2016, 6(8), 5575. 13 Chao L, Liu N, Xiong X J, et al. Chemical Communications, 2018, 54(30), 3743. 14 Ye S H, Feng J X, Wang A L, et al. Journal of Materials Chemistry A, 2015, 3(46), 23201. 15 Ding J T, Ji S, Wang H, et al. Electrochimica Acta, 2017, 255, 55. 16 Sheng J, Kang J, Ye H, et al. Journal of Materials Chemistry A, 2017, 6(9), 3906. 17 Hu G F, Shang L, Sheng T, et al. Advanced Functional Materials, 2020, 30(28), 2002281. 18 Wang L L, Zhang D F, Guo L. Nanoscale, 2014, 6(9), 4635. 19 Nassr A A A, Sinev I, Pohl M M, et al. ACS Catalysis, 2014, 4(8), 2449. 20 Zheng Y, Chen F, Liu X, et al. Journal of Power Sources, 2020, 472, 228517. 21 Park K W, Choi J H, Kwon B K, et al. Journal of Physical Chemistry B, 2002, 106(8), 1869. 22 Du W X, Wang Q, Saxner D, et al. Journal of the American Chemical Society, 2011, 133(38), 15172. 23 Hammer B, Hansen L B, Norskov J K. Physical Review B, 1999, 59(11), 7413. 24 Chen C S, Pan F M, Yu H J. Applied Catalysis B-Environmental, 2011, 104(3-4), 382. 25 Wang C Z, Zhang Y, Zhang Y J, et al. ACS Applied Materials & Interfaces, 2018, 10(11), 9444. 26 Wu Y E, Wang D S, Niu Z Q, et al. Angewandte Chemie-International Edition, 2012, 51(50), 12524. 27 Huang T Z, Mao S, Zhou G H, et al. Nanoscale, 2015, 7(4), 1301. 28 Sharma S, Pollet B G. Journal of Power Sources, 2012, 208, 96. 29 Tan Q, Shu C Y, Abbott J, et al. ACS Catalysis, 2019, 9(7), 6362. 30 Hameed R M A, El-Sherif R M. Applied Catalysis B-Environmental, 2015, 162, 217. 31 Zhou Y Z, Yang G H, Pan H B, et al. Journal of Materials Chemistry A, 2015, 3(16), 8459. 32 Choi Y, Gu M, Park J, et al. Advanced Energy Materials, 2012, 2(12), 1510. 33 Novoselov K S, Fal′ko V I, Colombo L, et al. Nature, 2012, 490(7419), 192. 34 Guo S J, Dong S J, Wang E K. ACS Nano, 2010, 4(1), 547. 35 Xu X, Zhou Y K, Lu J M, et al. Electrochimica Acta, 2014, 120, 439. 36 Qin Y, Chao L, Yuan J, et al. Chemical Communications, 2016, 52(2), 382. 37 Zhang L S, Liang X Q, Song W G, et al. Physical Chemistry Chemical Physics, 2010, 12(38), 12055. 38 Zhao S L, Yin H J, Du L, et al. Journal of Materials Chemistry A, 2014, 2(11), 3719. 39 Elangovan A, Xu J Y, Sekar A, et al. Chemcatchem, 2020, 12(23), 6000. 40 Zhao W Y, Ni B, Yuan Q, et al. Advanced Energy Materials, 2017, 7(8), 1601593. 41 Guo Y G, Hu J S, Zhang H M, et al. Advanced Materials, 2005, 17(6), 746. 42 Arbizzani C, Biso M, Manferrari E, et al. Journal of Power Sources, 2008, 178(2), 584. 43 Zhou Q, Zhao Z B, Wang Z Y, et al. Nanoscale, 2014, 6(4), 2286. 44 Ke Z G, Ma Y L, Zhu Z J, et al. Applied Physics Letters, 2018, 112(1),013701. 45 Xu L, Jiang Q Q, Xiao Z H, et al. Angewandte Chemie-International Edition, 2016, 55(17), 5277. 46 Liu Z J, Zhao Z H, Wang Y Y, et al. Advanced Materials, 2017, 29(18),1606027. 47 Zhou Q, Zhao Z B, Chen Y S, et al. Journal of Materials Chemistry, 2012, 22(13), 6061. 48 Wang Q, Wang X K, Chai Z F, et al. Chemical Society Reviews, 2013, 42(23), 8821. 49 Ma Y L, Wang Q, Miao Y L, et al. Applied Surface Science, 2018, 450, 413. 50 Miao Y L, Ma Y L, Wang Q. ACS Sustainable Chemistry & Engineering, 2019, 7(8), 7597. 51 Wang Q, Zuo X, Wang X K. Dalton Transactions, 2014, 43(34), 12961. 52 Wang Q, Song M M, Chen C L, et al. Applied Physics Letters, 2012, 101(3), 033103. 53 Zhang W, Bu S, Yuan Q, et al. Journal of Materials Chemistry A, 2019, 7(2), 647. 54 Hummers W S, Offeman R E. Journal of the American Chemical Society, 1958, 80(6), 1339. 55 Clay K J, Speakman S P, Amaratunga G A J, et al. Journal of Applied Physics, 1996, 79(9), 7227. 56 Li L H, Wu Y, Lu J, et al. Chemical Communications, 2013, 49(68), 7486. 57 Hu Y J, Wu P, Yin Y J, et al. Applied Catalysis B-Environmental, 2012, 111, 208. 58 Zhao L, Sui X L, Li J Z, et al. Applied Catalysis B-Environmental, 2018, 231, 224. 59 Xu W Y, Wang X Z, Zhou Q, et al. Journal of Materials Chemistry, 2012, 22(29), 14363. 60 Tang J, Liu J, Li C L, et al. Angewandte Chemie-International Edition, 2015, 54(2), 588. 61 Demri B, Muster D. Journal of Materials Processing Technology, 1995, 55(3-4), 311. 62 Barakat N A M, Yassin M A, Al-Mubaddel F S, et al. Applied Catalysis A-General, 2018, 555, 148. 63 Yu B, Chen Y, Wang Z, et al. Journal of Power Sources, 2020, 447, 227364. 64 Sriphathoorat R, Wang K, Luo S P, et al. Journal of Materials Chemistry A, 2016, 4(46), 18015. 65 Zhang Y H, Li J J, Rong H, et al. Langmuir, 2017, 33(24), 5991. 66 Dong L F, Gari R R S, Li Z, et al. Carbon, 2010, 48(3), 781. 67 Zhang C L, Zhu A M, Huang R, et al. International Journal of Hydrogen Energy, 2014, 39(16), 8246. 68 Zhou X W, Zhang R H, Zhou Z Y, et al. Journal of Power Sources, 2011, 196(14), 5844. 69 Hu Y J, Shao Q, Wu P, et al. Electrochemistry Communications, 2012, 18, 96. 70 Wang L Y, Zhang G G, Liu Y, et al. Nanoscale, 2016, 8(21), 11256. 71 He Q, Chen W, Mukerjee S, et al. Journal of Power Sources, 2009, 187(2), 298. 72 Peng C, Hu Y, Liu M, et al. Journal of Power Sources, 2015, 278, 69. 73 Zhao Y, Aziz M H, Chen C, et al. Materials Letters, 2020, 276, 128258.