Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21120093-11    https://doi.org/10.11896/cldb.21120093
  无机非金属及其复合材料 |
等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯
陈常乐1,2,†, 皮小虎2,3,†, 缪远玲1,2, 孙绪绪1,2, 詹福如3, 王奇1,2,*, 欧思聪4
1 中国科学院合肥物质科学研究院等离子体物理研究所,合肥 230031
2 中国科学技术大学,合肥 230026
3 中国科学院合肥物质科学研究院智能机械研究所,合肥 230031
4 昆士兰理工大学化学与物理学院和材料科学研究中心,布利斯班QLD 4000
Plasma Made Pt-Ni/N-doped Reduced Graphene Oxide with Enhanced Electrocatalytic Activity for Methanol Oxidation
CHEN Changle1,2,†, PI Xiaohu2,3,†, MIAO Yuanling1,2, SUN Xuxu1,2, ZHAN Furu3, WANG Qi1,2,*, KOSTYA (KEN) Ostrikov4
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2 University of Science and Technology of China,Hefei 230026, China
3 Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
4 School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia
下载:  全 文 ( PDF ) ( 18560KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 贵金属铂是目前应用最广泛、最有效的催化剂之一,但其储量有限、价格昂贵、易中毒失去催化活性等缺点限制了它的应用。为了解决这些问题,研究人员提出了许多材料改进策略,如改变铂颗粒的大小和分布、控制铂的晶面、制造催化剂表面缺陷等以提高铂的利用率和催化活性。此外,铂基双金属催化剂也被证明是一种降低铂负载量非常有效的方法。基于双功能机理和电子效应,两种金属间存在协同作用,首先第二组分金属的存在可以使水在较低的电位下形成-OH中间体,从而更容易氧化和去除CO中间体。同时,电子从第二种金属转移到铂覆盖层,有效地降低了铂d带中心位置,减弱了铂与CO的相互作用,从而有效地增强了铂基双金属催化剂的抗中毒性。在常用的双金属催化剂中,PtNi催化剂因其成本低、催化活性高、稳定性好而受到广泛关注。此外,石墨烯作为一种独特的二维材料,由于其独特的电学性质、大的比表面积、良好的物理化学稳定性,是作为催化剂载体的理想材料。氮掺杂石墨烯是获得更好催化剂性能的有效途径。氮掺杂石墨烯可以有效改善材料的电子特性,并为催化剂颗粒的均匀分散提供更多锚定位点。更重要的是,氮掺杂石墨烯由于氮的引入增加了电子密度,从而加强了金属和载体之间的相互作用,进而提高了金属催化剂的结构稳定性、电化学活性和耐久性。
本工作利用氮气和氢气混合气体的低温等离子体放电处理金属盐氧化石墨烯前驱体,制备N掺杂石墨烯负载Pt-Ni复合材料(Pt-Ni/NrGO),并将其与单一H2等离子体处理得到的未掺氮石墨烯负载铂镍复合材料(Pt Ni/rGO)进行对比,讨论氮气和氢气的协同效应、等离子体对金属盐的还原作用以及催化剂的性能。结果表明,通过H2和N2等离子体处理可以同时实现氧化石墨烯和金属盐的还原、催化剂颗粒的均匀分散及载体的N掺杂。
催化剂在0.5 mol/L H2SO4和1 mol/L CH3OH混合电解质中的CV曲线可以表征催化剂材料的催化活性。在扫描速率为50 mV·s-1、电位范围为0~1 V的条件下,Pt-Ni/NrGO、Pt-Ni/rGO和Pt/C的正向峰电流密度(If)分别为519.3 mA·mg-1、373.1 mA·mg-1和354.4 mA·mg-1,这表明Pt-Ni/NrGO在三者中具有最优异的电催化活性。If与反向峰电流密度(Ib)的比值可以用来表示Pt-Ni/NrGO对催化剂表面CO中间体的去除能力(抗中毒能力)。Pt-Ni/NrGO的If/Ib为1.87,大于Pt-Ni/rGO(1.48)和Pt/C(0.56)。因此,Pt-Ni/NrGO比Pt Ni/rGO和Pt/C具有更好的抗中毒能力。最后,Pt-Ni/NrGO在0.65 V的电压下进行了3 600 s的CA测试, 其保持了最高的电流密度,这证实了Pt-Ni/NrGO具有最高的稳定性。因此,通过上述比较可以发现Pt-Ni/NrGO的电催化性能(活性、抗中毒性和稳定性)在三者中最佳。
低温等离子体技术在放电过程中产生大量的活性物质,如电子、离子、原子和自由基等,该方法在制造材料空位、接枝或去除表面官能团等方面有效地避免了有毒化学还原剂和封端剂的使用,实现了简单性和环境友好性的结合。因此,这一创新的合成路线在制备高性能催化剂方面具有巨大的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈常乐
皮小虎
缪远玲
孙绪绪
詹福如
王奇
欧思聪
关键词:  甲醇氧化反应  燃料电池  双金属Pt-Ni催化剂  等离子体纳米技术  电催化性能    
Abstract: To address the problem of the high cost and low catalytic activity of platinum-carbon-based (Pt/C) catalysts in power sources based on direct methanol fuel cells, we developed the high-performance Pt-Ni bimetallic methanol oxidation catalyst supported on N-doped reduced graphene oxide (Pt-Ni/NrGO). Nitrogen is doped into graphene through inductively coupled plasma process using a mixture of H2 and N2 gases to create defects and active sites to promote the dispersion of metal particles and reduce the particle size. Compared with the sample without nitrogen doping and the commercial Pt/C, the Pt-Ni/NrGO catalyst exhibits better catalytic activity, stability, and reduced poisoning effect in the methanol oxidation reaction. This low-temperature plasma approach is energy-efficient and environment-friendly and provides a new route for the synthesis of advanced functional nanomaterials with the desired properties.
Key words:  methanol oxidation reaction    fuel cell    bimetallic Pt-Ni catalyst    plasma nanotechnology    electrocatalytic property
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  O646  
基金资助: 国家重点研发计划(2022YFC3500500;2022YFC3500502);安徽省自然科学基金(2208085MA16);国家自然科学基金(11575253);安徽省杰出青年基金(1608085J03);澳大利亚研究理事会和昆士兰材料研究中心项目
作者简介:  † 共同第一作者
引用本文:    
陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
CHEN Changle, PI Xiaohu, MIAO Yuanling, SUN Xuxu, ZHAN Furu, WANG Qi, KOSTYA (KEN) Ostrikov. Plasma Made Pt-Ni/N-doped Reduced Graphene Oxide with Enhanced Electrocatalytic Activity for Methanol Oxidation. Materials Reports, 2023, 37(1): 21120093-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120093  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21120093
1 Chen Y, Lin Y, Zhang Y X, et al. Nano Energy, 2014, 8, 25.
2 Chen Y, Zhang Y X, Lin Y, et al. Nano Energy, 2014, 10, 1.
3 Xiao G L, Chen F L. Electrochemistry Communications 2011, 13(1), 57.
4 Yang C H, Yang Z B, Jin C, et al. Advanced Materials, 2012, 24(11), 1439.
5 Kakati N, Maiti J, Lee S H, et al. Chemical Reviews, 2014, 114(24), 12397.
6 Liu J W, Ma Q L, Huang Z Q, et al. Advanced Materials, 2019, 31(9), 1800696.
7 Tiwari J N, Tiwari R N, Singh G, et al. Nano Energy, 2013, 2(5), 553.
8 Antolini E. Applied Catalysis B-Environmental, 2016, 181, 298.
9 Hamnett A. Catalysis Today, 1997, 38(4), 445.
10 Chen A C, Holt-Hindle P. Chemical Reviews, 2010, 110(6), 3767.
11 Zhou W J, Song S Q, Li W Z, et al. Solid State Ionics, 2004, 175(1-4), 797.
12 Sakong S, Gross A. ACS Catalysis, 2016, 6(8), 5575.
13 Chao L, Liu N, Xiong X J, et al. Chemical Communications, 2018, 54(30), 3743.
14 Ye S H, Feng J X, Wang A L, et al. Journal of Materials Chemistry A, 2015, 3(46), 23201.
15 Ding J T, Ji S, Wang H, et al. Electrochimica Acta, 2017, 255, 55.
16 Sheng J, Kang J, Ye H, et al. Journal of Materials Chemistry A, 2017, 6(9), 3906.
17 Hu G F, Shang L, Sheng T, et al. Advanced Functional Materials, 2020, 30(28), 2002281.
18 Wang L L, Zhang D F, Guo L. Nanoscale, 2014, 6(9), 4635.
19 Nassr A A A, Sinev I, Pohl M M, et al. ACS Catalysis, 2014, 4(8), 2449.
20 Zheng Y, Chen F, Liu X, et al. Journal of Power Sources, 2020, 472, 228517.
21 Park K W, Choi J H, Kwon B K, et al. Journal of Physical Chemistry B, 2002, 106(8), 1869.
22 Du W X, Wang Q, Saxner D, et al. Journal of the American Chemical Society, 2011, 133(38), 15172.
23 Hammer B, Hansen L B, Norskov J K. Physical Review B, 1999, 59(11), 7413.
24 Chen C S, Pan F M, Yu H J. Applied Catalysis B-Environmental, 2011, 104(3-4), 382.
25 Wang C Z, Zhang Y, Zhang Y J, et al. ACS Applied Materials & Interfaces, 2018, 10(11), 9444.
26 Wu Y E, Wang D S, Niu Z Q, et al. Angewandte Chemie-International Edition, 2012, 51(50), 12524.
27 Huang T Z, Mao S, Zhou G H, et al. Nanoscale, 2015, 7(4), 1301.
28 Sharma S, Pollet B G. Journal of Power Sources, 2012, 208, 96.
29 Tan Q, Shu C Y, Abbott J, et al. ACS Catalysis, 2019, 9(7), 6362.
30 Hameed R M A, El-Sherif R M. Applied Catalysis B-Environmental, 2015, 162, 217.
31 Zhou Y Z, Yang G H, Pan H B, et al. Journal of Materials Chemistry A, 2015, 3(16), 8459.
32 Choi Y, Gu M, Park J, et al. Advanced Energy Materials, 2012, 2(12), 1510.
33 Novoselov K S, Fal′ko V I, Colombo L, et al. Nature, 2012, 490(7419), 192.
34 Guo S J, Dong S J, Wang E K. ACS Nano, 2010, 4(1), 547.
35 Xu X, Zhou Y K, Lu J M, et al. Electrochimica Acta, 2014, 120, 439.
36 Qin Y, Chao L, Yuan J, et al. Chemical Communications, 2016, 52(2), 382.
37 Zhang L S, Liang X Q, Song W G, et al. Physical Chemistry Chemical Physics, 2010, 12(38), 12055.
38 Zhao S L, Yin H J, Du L, et al. Journal of Materials Chemistry A, 2014, 2(11), 3719.
39 Elangovan A, Xu J Y, Sekar A, et al. Chemcatchem, 2020, 12(23), 6000.
40 Zhao W Y, Ni B, Yuan Q, et al. Advanced Energy Materials, 2017, 7(8), 1601593.
41 Guo Y G, Hu J S, Zhang H M, et al. Advanced Materials, 2005, 17(6), 746.
42 Arbizzani C, Biso M, Manferrari E, et al. Journal of Power Sources, 2008, 178(2), 584.
43 Zhou Q, Zhao Z B, Wang Z Y, et al. Nanoscale, 2014, 6(4), 2286.
44 Ke Z G, Ma Y L, Zhu Z J, et al. Applied Physics Letters, 2018, 112(1),013701.
45 Xu L, Jiang Q Q, Xiao Z H, et al. Angewandte Chemie-International Edition, 2016, 55(17), 5277.
46 Liu Z J, Zhao Z H, Wang Y Y, et al. Advanced Materials, 2017, 29(18),1606027.
47 Zhou Q, Zhao Z B, Chen Y S, et al. Journal of Materials Chemistry, 2012, 22(13), 6061.
48 Wang Q, Wang X K, Chai Z F, et al. Chemical Society Reviews, 2013, 42(23), 8821.
49 Ma Y L, Wang Q, Miao Y L, et al. Applied Surface Science, 2018, 450, 413.
50 Miao Y L, Ma Y L, Wang Q. ACS Sustainable Chemistry & Engineering, 2019, 7(8), 7597.
51 Wang Q, Zuo X, Wang X K. Dalton Transactions, 2014, 43(34), 12961.
52 Wang Q, Song M M, Chen C L, et al. Applied Physics Letters, 2012, 101(3), 033103.
53 Zhang W, Bu S, Yuan Q, et al. Journal of Materials Chemistry A, 2019, 7(2), 647.
54 Hummers W S, Offeman R E. Journal of the American Chemical Society, 1958, 80(6), 1339.
55 Clay K J, Speakman S P, Amaratunga G A J, et al. Journal of Applied Physics, 1996, 79(9), 7227.
56 Li L H, Wu Y, Lu J, et al. Chemical Communications, 2013, 49(68), 7486.
57 Hu Y J, Wu P, Yin Y J, et al. Applied Catalysis B-Environmental, 2012, 111, 208.
58 Zhao L, Sui X L, Li J Z, et al. Applied Catalysis B-Environmental, 2018, 231, 224.
59 Xu W Y, Wang X Z, Zhou Q, et al. Journal of Materials Chemistry, 2012, 22(29), 14363.
60 Tang J, Liu J, Li C L, et al. Angewandte Chemie-International Edition, 2015, 54(2), 588.
61 Demri B, Muster D. Journal of Materials Processing Technology, 1995, 55(3-4), 311.
62 Barakat N A M, Yassin M A, Al-Mubaddel F S, et al. Applied Catalysis A-General, 2018, 555, 148.
63 Yu B, Chen Y, Wang Z, et al. Journal of Power Sources, 2020, 447, 227364.
64 Sriphathoorat R, Wang K, Luo S P, et al. Journal of Materials Chemistry A, 2016, 4(46), 18015.
65 Zhang Y H, Li J J, Rong H, et al. Langmuir, 2017, 33(24), 5991.
66 Dong L F, Gari R R S, Li Z, et al. Carbon, 2010, 48(3), 781.
67 Zhang C L, Zhu A M, Huang R, et al. International Journal of Hydrogen Energy, 2014, 39(16), 8246.
68 Zhou X W, Zhang R H, Zhou Z Y, et al. Journal of Power Sources, 2011, 196(14), 5844.
69 Hu Y J, Shao Q, Wu P, et al. Electrochemistry Communications, 2012, 18, 96.
70 Wang L Y, Zhang G G, Liu Y, et al. Nanoscale, 2016, 8(21), 11256.
71 He Q, Chen W, Mukerjee S, et al. Journal of Power Sources, 2009, 187(2), 298.
72 Peng C, Hu Y, Liu M, et al. Journal of Power Sources, 2015, 278, 69.
73 Zhao Y, Aziz M H, Chen C, et al. Materials Letters, 2020, 276, 128258.
[1] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[2] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[3] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[4] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[5] 冯磊, 舒文祥, 文陈, 崔庆新, 白晶莹, 李心歆. 火星原位资源可用途径分析[J]. 材料导报, 2022, 36(22): 22040408-7.
[6] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[7] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[8] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[9] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[10] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[11] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[12] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[13] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[14] 吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
[15] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed