Abstract: Wearable devices, as an emerging technology product, have shown great application potential in the fields of health monitoring, human-computer interaction, and aerospace. However, most wearable devices are still powered by traditional button batteries or lithium battery packs, which are rigid, bulky, with limited energy storage and short lifespan, severely limiting the application and promotion of wearable devices. The continuity of human perspiration and the fact that sweat contains a large amount of electrolytes and metabolites make it a potential source of continuous energy supply for wearable devices. Sweat battery is a new technology that utilizes human sweat as fuel to provide power, which has the advantages of lightness, softness, mild reaction conditions, highly biocompatible and wearable. This review aims to comprehensively summarize the working principles, device structures, and latest application progress of sweat batteries, hoping to provide a guide for the development of flexible sweat batteries.
1 Nahavandi D, Alizadehsani R, Khosravi A, et al. Computer Methods and Programs in Biomedicine, 2022, 213, 106541. 2 Sun Y, Li Y Z, Yuan M. Nano Energy, 2023, 115, 108715. 3 Nozariasbmarz A, Collins H, Dsouza K, et al. Applied Energy, 2020, 258, 114069. 4 Hao D, Qi L, Tairab A M, et al. Renewable Energy, 2022, 188, 678. 5 Khalid S, Raouf I, Khan A, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6, 821. 6 Mink J E, Qaisi R M, Logan B E, et al. NPG Asia Materials, 2014, 6, e89. 7 Pourshaban E, Banerjee A, Karkhanis M U, et al. Advanced Materials Technologies, 2023, 8, 2200518. 8 Wang L, Su Q, Liu Y, et al. Chemical Science, 2022, 13, 12136. 9 Baker L B. Temperature, 2019, 6, 211. 10 Gao F, Liu C, Zhang L, et al. Microsystems & Nanoengineering, 2023, 9, 1. 11 Zhong B, Jiang K, Wang L, et al. Advanced Science, 2022, 9, 2103257. 12 Ling Y, An T, Yap L W, et al. Advanced Materials, 2020, 32, 1904664. 13 Dong K, Jia B, Yu C, et al. Biosensors and Bioelectronics, 2013, 41, 916. 14 Chen H, Simoska O, Lim K, et al. Chemical Reviews, 2020, 120, 12903. 15 Ghaffari R, Rogers J A, Ray T R. Sensors and Actuators B: Chemical, 2021, 332, 129447. 16 Mohammadifar M, Tahernia M, Yang J H, et al. Nano Energy, 2020, 75, 104994. 17 Mohammadifar M, Choi S. Advanced Materials Technologies, 2017, 2, 1700127. 18 Ryu J, Choi S. Biosensors and Bioelectronics, 2021, 186, 113293. 19 Ryu J, Landers M, Choi S. Biosensors and Bioelectronics, 2022, 205, 114128. 20 Yahiro A T, Lee S M, Kimble D O. Biochimica et Biophysica Acta, 1964, 88, 375. 21 Suzuki A, Mano N, Tsujimura S. Electrochimica Acta, 2017, 232, 581. 22 Agnès C, Reuillard B, Le Goff A, et al. Electrochemistry Communications, 2013, 34, 105. 23 Zebda A, Alcaraz J P, Vadgama P, et al. Bioelectrochemistry, 2018, 124, 57. 24 Huang X, Zhang L, Zhang Z, et al. Biosensors and Bioelectronics, 2019, 124, 40. 25 Sokic-Lazic D, de Andrade A R, Minteer S D. Electrochimica Acta, 2011, 56, 10772. 26 Courjean O, Gao F, Mano N. Angewandte Chemie International Edition, 2009, 121, 6011. 27 Meredith M T, Minteer S D. Annual Review of Analytical Chemistry, 2012, 5, 157. 28 Gross A J, Holzinger M, Cosnier S. Energy & Environmental Science, 2018, 11, 1670. 29 Lee H, Hong Y J, Baik S, et al. Advanced Healthcare Materials, 2018, 7, 1701150. 30 Manjakkal L, Yin L, Nathan A, et al. Advanced Materials, 2021, 33, 2100899. 31 Haque S U, Duteanu N, Ciocan S, et al. Journal of Environmental Ma-nagement, 2021, 298, 113483. 32 Xiao X, Xia H, Wu R, et al. Chemical Reviews, 2019, 119, 9509. 33 Yin J, Li X, Yu J, et al. Nature Nanotechnology, 2014, 9, 378. 34 Zhang Z, Li X, Yin J, et al. Nature Nanotechnology, 2018, 13, 1109. 35 Shen D, Duley W W, Peng P, et al. Advanced Materials, 2020, 32, 2003722. 36 Zheng C, Chu W, Fang S, et al. Interdisciplinary Materials, 2022, 1, 449. 37 Danford M D, Levy H A. Journal of the American Chemical Society, 1962, 84, 3965. 38 Matsui H, Suzuki Y, Fukumochi H, et al. Journal of the Physical Society of Japan, 2014, 83, 054708. 39 Riddick T M. Journal-American Water Works Association, 1961, 53, 1007. 40 Dobrovolsky I P, Gershenzon N I, Gokhberg M B. Physics of the Earth and Planetary Interiors, 1989, 57, 144. 41 Quincke G. Annalen Der Physik, 1859, 183, 1. 42 Hsu W L, Daiguji H, Dunstan D E, et al. Advances in Colloid and Interface Science, 2016, 234, 108. 43 Yin J, Zhang Z, Li X, et al. Nature Communications, 2014, 5, 3582. 44 Huang Y, Cheng H, Qu L. ACS Materials Letters, 2021, 3, 193. 45 Gennes P G, Brochard-Wyart F, Quéré D. Physics Today, 2004, 57, 66. 46 Xue G, Xu Y, Ding T, et al. Nature Nanotechnology, 2017, 12, 317. 47 Gao W, Emaminejad S, Nyein H Y Y, et al. Nature, 2016, 529, 509. 48 Park J, Sempionatto J R, Kim J, et al. ACS Sensors, 2020, 5, 1363. 49 Liu X, Ueki T, Gao H, et al. Nature Communications, 2022, 13, 4369. 50 Guan H, Zhong T, He H, et al. Nano Energy, 2019, 59, 754. 51 Zhang W, Guan H, Zhong T, et al. Nano-micro Letters, 2020, 12, 1. 52 Lv J, Jeerapan I, Tehrani F, et al. Energy & Environmental Science, 2018, 11, 3431. 53 Jeerapan I, Sempionatto J R, Pavinatto A, et al. Journal of Materials Chemistry A, 2016, 4, 18342. 54 Liu Y, Huang X, Zhou J, et al. Nano Energy, 2022, 92, 106755. 55 Ju J, Xiao G, Jian Y, et al. Nano Energy, 2023, 109, 108304. 56 Jia W, Wang X, Imani S, et al. Journal of Materials Chemistry A, 2014, 2, 18184. 57 Serag E, El-Maghraby A, El Nemr A. Carbon Letters, 2022, 32, 395. 58 Minteer S D. International Materials Reviews, 2018, 63, 241. 59 Hartel M C, Lee D, Weiss P S, et al. Biosensors and Bioelectronics, 2022, 215, 114565. 60 Jia W, Valdés-Ramírez G, Bandodkar A J, et al. Angewandte Chemie International Edition, 2013, 52, 7233. 61 Yang Y, Su Y, Zhu X, et al. Biosensors and Bioelectronics, 2022, 198, 113833. 62 Bandodkar A J, You J M, Kim N H, et al. Energy & Environmental Science, 2017, 10, 1581. 63 Chen X, Yin L, Lv J, et al. Advanced Functional Materials, 2019, 29, 1905785. 64 Wu H, Xu L, Wang Y, et al. ACS Energy Letters, 2020, 5, 3708. 65 Bandodkar A J, Lee S P, Huang I, et al. Nature Electronics, 2020, 3, 554. 66 Wu M, Shi R, Zhou J, et al. Journal of Materials Chemistry A, 2022, 10, 19662. 67 Huang X, Liu Y, Zhou J, et al. npj Flexible Electronics, 2022, 6, 10. 68 Liu Y, Huang X, Zhou J, et al. Advanced Science, 2022, 9, 2104635. 69 Xiao G, Ju J, Lu H, et al. Advanced Science, 2022, 9, 2103822. 70 Zheng C, Fang S, Chu W, et al. Nano Research, 2023, 16, 11320. 71 Li L, Gao S, Hao M, et al. Nano Energy, 2021, 85, 105970. 72 Shao C, Ji B, Xu T, et al. ACS Applied Materials & Interfaces, 2019, 11, 30927. 73 Qin Y, Wang Y, Sun X, et al. Angewandte Chemie International Edition, 2020, 132, 10706. 74 Li L, Feng S, Bai Y, et al. Nature Communications, 2022, 13, 1043. 75 Li J, Liu K, Ding T, et al. Nano Energy, 2019, 58, 797. 76 Li L, Zheng Z, Ge C, et al. Advanced Materials, 2023, 35, 2304099. 77 Huangfu X, Guo Y, Mugo S M, et al. Small, 2023, 19, 2207134. 78 Logan B E, Rossi R, Ragab A, et al. Nature Reviews Microbiology, 2019, 17, 307. 79 Liu X, Gao H, Ward J E, et al. Nature, 2020, 578, 550. 80 Hu Q, Ma Y, Ren G, et al. Science Advances, 2022, 8, eabm8047. 81 Battat S, Weitz D A, Whitesides G M. Lab on a Chip, 2022, 22, 530. 82 Kashaninejad N, Nguyen N T. Lab on a Chip, 2023, 23, 913. 83 Lin P H, Nien H H, Li B R. Annual Review of Analytical Chemistry, 2023, 16, 181. 84 Li M, Wang L, Liu R, et al. Biosensors and Bioelectronics, 2021, 174, 112828. 85 Escalona-Villalpando R A, Reid R C, Milton R D, et al. Journal of Power Sources, 2017, 342, 546. 86 Huang X, Li J, Liu Y, et al. Bio-Design and Manufacturing, 2022, 5, 1. 87 Yin L, Sandhu S S, Liu R, et al. Advanced Energy Materials, 2023, 13, 2203418. 88 Yu Y, Nassar J, Xu C, et al. Science Robotics, 2020, 5, eaaz7946. 89 Luo G, Xie J, Liu J, et al. Small, 2024, 20, 2306318.