Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 24030032-9    https://doi.org/10.11896/cldb.24030032
  金属与金属基复合材料 |
连续物理气相沉积带钢涂镀研究进展与应用现状
赵兴源1, 刘昕1, 刘秋元1, 邱肖盼2, 张子月1,3, 江社明1, 张启富1,*
1 钢铁研究总院钢研工程设计有限公司先进金属材料涂镀国家工程实验室,北京 100081
2 中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190
3 北京科技大学新材料技术研究院,北京 100083
Continuous Physical Vapor Deposition of Steel Strip Coating: Research Progress and Current Applications
ZHAO Xingyuan1, LIU Xin1, LIU Qiuyuan1, QIU Xiaopan2, ZHANG Ziyue1,3, JIANG Sheming1, ZHANG Qifu1,*
1 National Engineering Laboratory of Advanced Coating Technology for Metals, Gangyan Engineering Design Co., Ltd., Central Iron & Steel Research Institute, Beijing 100081, China
2 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 7956KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着“碳达峰、碳中和”成为全球共识,新一代高强钢因在实现钢铁行业节能减排和汽车轻量化战略中扮演的关键角色受到了广泛的关注,但传统镀层技术电镀锌因氢脆危害和环保要求以及热镀锌的可镀性差等问题,已越来越难以满足其表面防护需求。物理气相沉积技术通过真空镀膜方式解决了新一代高强钢电镀和热浸镀的现存难题,优异的表面质量、强附着力、广泛的镀料选择和环保特性使其成为下一代表面工程技术的重要发展方向。本文综述了PVD在带钢涂镀领域替代传统带钢防腐镀层技术(如电镀锌和热镀锌)的应用及发展前景,特别关注了PVD的热蒸发方法、带钢连续PVD涂镀的发展历史、研究进展及其在工业应用中的现状,最后展望了带钢连续PVD镀层技术未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵兴源
刘昕
刘秋元
邱肖盼
张子月
江社明
张启富
关键词:  物理气相沉积  带钢涂镀  锌及锌合金  耐腐蚀性    
Abstract: The global consensus on "carbon peak and carbon neutrality" has intensified focus on the new generation of high-strength steel, pivotal in advancing energy conservation and emission reduction in the steel industry and automotive lightweight strategies. Traditional coating methods like electro-galvanized zinc are struggling to meet surface protection demands due to hydrogen embrittlement risks, stringent environmental regulations, and the poor platability of hot-dip galvanizing. Physical Vapor Deposition technology, leveraging vacuum coating, has adeptly resolved these issues in electroplating and hot-dip galvanizing for new generation high-strength steel. PVD's exceptional surface quality, robust adhesion, diverse coating material options, and environmental advantages mark it as a crucial advancement in next-generation surface engineering technologies. This paper reviews the application and development prospects of PVD in replacing traditional corrosion-resistant coating technologies for strip steel (such as electroplating and hot-dip galvanizing), with a particular focus on the thermal evaporation method of PVD, the development history of continuous PVD coating for strip steel, research progress, and its current status in industrial applications. Finally, the review underscores the agenda for future research directions.
Key words:  physical vapor deposition    strip steel coating    zinc and zinc alloys    corrosion resistance
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TG154.5  
基金资助: 农机装备材料生产应用示范平台(TC200H01X-5)
通讯作者:  *张启富,钢铁研究总院教授级高级工程师、博士研究生导师。目前主要从事耐蚀金属材料涂镀层技术、带钢连续PVD涂镀、材料表面工程等方面的研究工作。zhqifu@vip.sina.com   
作者简介:  赵兴源,现为钢铁研究总院博士研究生,在张启富教授的指导下进行研究。目前主要研究领域为带钢连续PVD镀锌技术。
引用本文:    
赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
ZHAO Xingyuan, LIU Xin, LIU Qiuyuan, QIU Xiaopan, ZHANG Ziyue, JIANG Sheming, ZHANG Qifu. Continuous Physical Vapor Deposition of Steel Strip Coating: Research Progress and Current Applications. Materials Reports, 2025, 39(2): 24030032-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030032  或          https://www.mater-rep.com/CN/Y2025/V39/I2/24030032
1 Kuziak R, Kawalla R, Waengler S. Archives of Civil and Mechanical Engineering, 2008, 8(2), 103.
2 Taub A, De Moor E, Luo A, et al. Annual Review of Materials Research, 2019, 49, 327.
3 Yang Y, Xia X. High-tech and industrialization, 2021, 27(12),16(in Chinese).
杨洋, 夏雪.高科技与产业化, 2021, 27(12),16.
4 Ryan M P, Williams D E, Chater R J, et al. Nature, 2002, 415(6873), 770.
5 Shibli S M A, Meena B N, Remya R. Surface and Coatings Technology, 2015, 262, 210.
6 Sajjadnejad M, Mozafari A, Omidvar H, et al. Applied Surface Science, 2014, 300, 1.
7 Wright D, Gage N, Wilson B A. Plating and Surface Finishing, 1994, 81(7), 18.
8 Kanani N. In: Electroplating, basic principles, processes and practice. Elsevier, 2004.
9 Jia H X, Zhang X W, Xu J P, et al. Metals, 2019, 9(7), 798.
10 Sugawara N. Metal Finishing, 1997, 3(95), 92.
11 Yasakau K A, Giner I, Vree C, et al. Applied Surface Science, 2016, 389, 144.
12 Bellhouse E M, McDermid J R. Metallurgical and Materials Transaction A, 2011, 42(9), 2753.
13 Zhang C, Yanlin H, Weisen Z, et al. Coatings, 2020, 10(12), 1265.
14 Quinto D T. Fall Bulletin, 2007, 17, 22.
15 Srivatsa R A, McAvoy T D, Johnson L D, et al. Surface Engineering, 2013, 11(1), 75.
16 Knotek O, Löffler F, Krámer G. Surface and Coatings Technology, 1993, 59(1-3), 14.
17 Navinšek B, Panjan P, Urankar I, et al. Surface and Coatings Technology, 2001, 142, 1148.
18 Hoche H, Pusch C, Oechsner M. Surface and Coatings Technology, 2019, 376, 74.
19 Navinšek B, Panjan P, Milošev I. Surface and Coatings Technology, 1997, 97(1-3), 182.
20 Mattox D M. Handbook of physical vapor deposition (PVD) processing, Second Edition, Westwood, Noyes Publications, 1998.
21 Liu X, Qiu X P, Jiang S M, et al. Materials Protection, 2019, 52(8), 133 (in Chinese).
刘昕, 邱肖盼, 江社明, 等.材料保护, 2019, 52(8), 133.
22 Mezher S J, Kadhim K J, Abdulmunem O M, et al. Vacuum, 2020, 173, 109.
23 Dai Z R, Pan Z W, Wang Z L. Advanced Functional Materials, 2003, 13(1), 9.
24 Wang X, Wang X, Wang D, et al. Journal of Materials Science & Technology, 2018, 34(9), 1558.
25 Kuzmichev A, Tsybulsky L, Grundas S, Advances in Induction and Microwave Heating of Mineral and Organic Materials, BoD–Books on Demand, 2011.
26 Savov L, Janke D. ISIJ International, 2000, 40(2), 95.
27 Kalashami A G, DiGiovanni C, Razmpoosh M H, et al. Metallurgical and Materials Transactions A, 2020, 51(5), 2180.
28 Guo J, Jia J, Liu Y, et al. Metallurgical and Materials Transactions B, 2000, 31, 837.
29 Qiu X P. Deposition process and mechanism of zinc-magnesium alloy coa-ting prepared by vacuum evaporation. Ph.D.Thesis, Central Iron & Steel Research Institute, China, 2021(in Chinese)。
邱肖盼.真空蒸发制备锌镁合金镀层的沉积工艺与机理研究.博士学位论文,钢铁研究总院,2021.
30 Schuhmacher B, Schwerdt C, Seyfert U, et al. Surface and Coatings Technology, 2003, 163, 703.
31 La J H, Bae K T, Lee S Y, et al. Journal of Mechanical Science and Technology, 2016, 30, 4417.
32 Kim T Y, Goodenough M. Corrosion Science and Technology, 2011, 10(6), 194.
33 Huang H H, Liu Y S, Chen Y M, et al. Surface and Coatings Technology, 2006, 200(10), 3309.
34 Myburg G, Auret F D. Journal of Applied Physics, 1992, 71(12), 6172.
35 Al-Kuhaili M F, Durrani S M A, Khawaja E E. Journal of Physics D, Applied Physics, 2004, 37(8), 1254.
36 Schuhmacher B, Müschenborn W, Stratmann M, et al. Advanced Engineering Materials, 2001, 3(9), 681.
37 Marder A, Goodwin F. The metallurgy of zinc coated steel, Netherlands, Elsevier Science, 2023.
38 Schiller S, Beister G, Neumann M, et al. Thin Solid Films, 1982, 96(3), 199.
39 Maeda M, Ito T, Aiko T, et al. SAE Transactions, 1986, 95(2), 172.
40 Maeda M, Umeda S, Tsukiji N, et al. SAE Transactions, 1986, 95(2), 179.
41 Kawafuku J, Katoh J, Toyama M, et al. Tetsu-to-Hagané, 1991, 77(7), 995.
42 Baptiste L, van Landschoot N, Gleijm G, et al. Surface and Coatings Technology, 2007, 202(4-7), 1189.
43 Jeong U, Nam G H, Eom M J, et al. The Korean Institute of Surface Engineering, 2012, 05, 277.
44 Luo Y. Journal of Engineering Studies, 2018, 10(1),49(in Chinese).
罗晔.工程研究-跨学科视野中的工程, 2018, 10(1), 49.
45 Schmitz B, Colin R, Economopoulos M. Revue de Métallurgie, 2000, 97(7-8), 971.
46 Schmitz B. Steel Research, 2001, 72(11-12), 522.
47 Chaleix D, Allely C, Silberberg E, et al. EP patent, WO 2019/ 043472, 2019.
48 Pesci C, Chaleix D, Silberberg E, et al. In: 5th International Conference on Steels in Cars and Trucks. Amsterdam-Schiphol, The Netherlands, 2017, pp.275.
49 Chaleix D, Eric J, Cécile P, et al. In: Proceedings of Galvatech2021. Online meeting, 2021, pp.1134.
50 Prosek T, Persson D, Stoulil J, et al. Corrosion Science, 2014, 86, 231.
51 Volovitch P, Allely C, Ogle K. Corrosion Science, 2009, 51(6), 1251.
52 Rashmi S, Elias L, Hegde A C. Engineering Science and Technology, 2017, 20(3), 1227.
53 Lee J W, Park B R, Oh S Y, et al. Corrosion Science, 2019, 160, 108170.
54 Chakarova V, Boiadjieva-Scherzer T, Kovacheva D, et al. Corrosion Science, 2018, 140, 73.
55 Ueda K, Takahashi A, Kubo Y. In: Galvatech 2011, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet. Genoa, Italy, 2011, pp.54.
56 Guzman L, Wolf G K, Davies G M. Surface and Coatings Technology, 2003, 174, 665.
57 Shimogori K, Satoh H, Toyama M, et al. U. S. patent, US5002837A, 1991.
58 La J H, Lee S Y, Hong S J. Surface & Coatings Technology, 2014, 259, 56.
59 Song M G, Kim H K, Lee S Y. ISIJ International, 2019, 59(6), 1113.
60 Hayashi H, Nakagawa T. Journal of Materials Processing Technology, 1994, 46(3-4), 455.
61 Ye M, Delplancke J L, Berton G, et al. Surface & Coatings Technology, 1998, 105(1-2), 184.
62 Lundgren A H. SAE Transactions, 1989, 98(5), 613.
63 Sabooni S, Galinmoghaddam E, Westerwaal R J, et al. WIT Transactions on Engineering Sciences, 2019, 124, 63.
64 Prosek T, Nazarov A, Bexell U, et al. Corrosion Science, 2008, 50(8), 2216.
65 Sullivan J, Mehraban S, Elvins J. Corrosion Science, 2011, 53(6), 2208.
66 Park J H, Ko K P, Hagio T, et al. Corrosion Science, 2022, 202, 110330.
67 Bolton R, Dunlop T, Sullivan J, et al. Journal of the Electrochemical Society, 2019, 166(11), 3305.
68 Wint N, Cooze N, Searle J R, et al. Journal of the Electrochemical Society, 2019, 166(11), 3147.
69 Osório W R, Freire C M, Garcia A. Materials Science and Engineering A, 2005, 402(1-2), 22.
70 Kim H K, Lee S H, Lee S Y. In: Proceedings of Galvatech2021. Online meeting, 2021, pp.108.
71 Hosking N C, Ström M A, Shipway P H, et al. Corrosion Science, 2007, 49(9), 3669.
72 Kawafuku J, Katoh J, Toyama M, et al. SAE Technical Paper, 1991, 912272.
73 Kim J S, Kim T C and Lee S K. In: Proceedings of Galvatech 2021. Online meeting, 2021, pp.9.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[3] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[4] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[5] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[6] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[7] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[8] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[9] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[10] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[11] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[12] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[13] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[14] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[15] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed