Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22030061-6    https://doi.org/10.11896/cldb.22030061
  金属与金属基复合材料 |
Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响
赵建华1, 金荣华2,*, 纪秀林3, 段天泽1, 庄曙东1, 赵占西1
1 河海大学机电工程学院,江苏 常州 213022
2 中国特种设备检测研究院,北京 100013
3 汕头大学工学院,广东 汕头 515063
Effect of Al Content on Erosion Wear Resistance and Corrosion Resistance of CoCrFeNiTi0.5 High-entropy Alloy Coatings
ZHAO Jianhua1, JIN Ronghua2,*, JI Xiulin3, DUAN Tianze1, ZHUANG Shudong1, ZHAO Zhanxi1
1 College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, Jiangsu, China
2 China Special Equipment Inspection & Research Institute, Beijing 100013, China
3 College of Engineering, Shantou University, Shantou 515063, Guangdong,China
下载:  全 文 ( PDF ) ( 7270KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用激光熔覆技术制备了AlxCoCrFeNiTi0.5 (x=1.0、1.5、2.0、2.5(原子比),简记为Alx)高熵合金涂层,研究Al含量对涂层组织结构、显微硬度、耐冲蚀和耐腐蚀性能的影响。实验结果表明,随着Al含量的增加,AlxCoCrFeNiTi0.5高熵合金涂层的相结构由简单的FCC+BCC无序固溶体逐渐转变为无序BCC+有序BCC的混合结构,同时涂层的硬度显著提高。AlCoCrFeNiTi0.5高熵合金涂层表现出塑性材料的冲蚀磨损特征,在低冲蚀角(30°)、中冲蚀角(60°)和高冲蚀角(90°)下,其冲蚀磨损率仅分别为同条件下06Cr16Ni5Mo不锈钢的56.09%、59.33%和60%,耐冲蚀磨损性能优异。AlxCoCrFeNiTi0.5高熵合金涂层的耐蚀性随着Al含量的增加逐渐降低。适当添加Al不仅可以提高CoCrFeNiTi0.5高熵合金涂层的耐冲蚀磨损性能,而且合金具有很好的耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵建华
金荣华
纪秀林
段天泽
庄曙东
赵占西
关键词:  高熵合金涂层  组织结构  耐冲蚀性能  耐腐蚀性能    
Abstract: AlxCoCrFeNiTi0.5 (x—molar ratio, x=1.0, 1.5, 2.0, 2.5, denoted as Alx) high-entropy alloy (HEA) coatings were fabricated by laser cladding. The effect of Al content on microstructure, microhardness, erosion wear resistance and corrosion resistance of CoCrFeNiTi0.5 HEA coatings was studied. The results show the phases of AlxCoCrFeNiTi0.5 HEA coatings evolve gradually from simple FCC+BCC mixed disordered solid solution to mixed structure of disordered BCC+ordered BCC. The hardness of the coatings increases significantly with the increase of Al content. Al1.0 HEA coating follows ductile erosion mode. Al1.0 HEA coating has good erosion resistance at different impact angles. The erosion wear rate of Al1.0 HEA coating is only 56.09%, 59.33% and 60% that of 06Cr16Ni5Mo stainless steel at low impact angle (30°), middle impact angle (60°) and high impact angle (90°), respectively. The corrosion resistance of AlxCoCrFeNiTi0.5 HEA coatings gradually reduces with the increase of Al content. Proper Al addition can not only improve erosion wear resistance of CoCrFeNiTi0.5 HEA coating, and the alloy also has good corrosion resistance.
Key words:  high-entropy alloy coating    microstructure    erosion wear resistance    corrosion resistance
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51875169);河海大学大学生创新训练项目(202110294032)
通讯作者:  *金荣华,工程师,2003年6月毕业于河海大学获学士学位。现任职于中国特种设备检测研究院,主要研究方向为特种设备检验检测及表面工程。已发表论文四篇。398178411@qq.com   
作者简介:  赵建华,高级实验师,2020年毕业于河海大学获博士学位。目前主要从事材料强化与防护、焊接工艺及设备等方面的研究工作,在国内外期刊发表论文10余篇。
引用本文:    
赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
ZHAO Jianhua, JIN Ronghua, JI Xiulin, DUAN Tianze, ZHUANG Shudong, ZHAO Zhanxi. Effect of Al Content on Erosion Wear Resistance and Corrosion Resistance of CoCrFeNiTi0.5 High-entropy Alloy Coatings. Materials Reports, 2023, 37(17): 22030061-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030061  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22030061
1 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2015, 19(6), 349.
2 Jayaraj J, Thinaharan C, Ningshen S, et al. Intermetallics, 2017, 89, 123.
3 Laplanche G, Kostka A, Reinhart C, et al. Acta Materialia, 2017, 128, 292.
4 Gao M C, Carney C S, Jablonksi P D, et al. Journal of Metals, 2015, 67(11), 2653.
5 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
6 Tao J C, Lu Y P. Materials Reports, 2020, 34(4), 08096 (in Chinese).
陶继闯, 卢一平. 材料导报, 2020, 34(4), 08096.
7 Zhang C H, Shan L N, Wu C L, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(5), 1308 (in Chinese).
张春华, 单丽娜, 吴臣亮, 等. 中国有色金属学报, 2015, 25(5), 1308.
8 Menghani J, Vyas A, More S, et al. Lasers in Engineering, 2021, 49(1-3), 67.
9 Ma G L, Zhao Y, Cui H Z, et al. Acta Metallurgica Sinica, 2021, 34, 1087.
10 Senkov O N, Senkova S V, Woodward C. Acta Materialia, 2014, 68, 214.
11 Zhang K B, Fu Z Y. Intermetallics, 2012, 22, 24.
12 Nair R B, Arora H S. Advanced Engineering Materials, 2018, 20(6), 1.
13 Wang Y P. Microstructure and properties of AlCrFeCoNiCu multi-principal-element alloys and its composites. Ph. D. Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).
王艳萍. AlCrFeCoNiCu系多主元合金及其复合材料的组织与性能. 博士学位论文, 哈尔滨工大学, 2009.
14 Sheng H F. Processing, microstructure and properties of AlxCoCrCuFeNi high entropy alloys and their in-situ composites. Ph. D. Thesis, University of Science and Technology of China, China, 2014 (in Chinese).
盛洪飞. AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构与性能研究. 博士学位论文, 中国科学技术大学, 2014.
15 Desale G R, Paul C P, Gandhi B K, et al. Wear, 2009, 266, 975.
16 Desale G R, Gandhi B K, Jain S C. Wear, 2011, 133(3), 301.
17 Bjordal M, Bardal E, Rogne T. Wear, 1995, 86(2), 508.
18 Lotz U, Heitz E. Materials and Corrosion, 1985, 36(4), 163.
19 Shivamurthy R C, Kamaraj M, Nagarajan R, et al. Wear, 2009, 267, 204.
20 Grewal H S, Anupam Agrawal, Singh H. Tribology Letters, 2013, 52(2), 287.
21 Islam M D, Farhat Z N. Wear, 2014, 311(1-2), 180.
22 López D A, Zapata J, Sepúlveda M, et al. Tribology International, 2018, 127, 96.
23 Burstein G T, Sasaki K. Wear, 2000, 240(1-2), 80.
24 Zhang Y, Huang C, Liu Z, et al. Materials Reports, 2016, 30(5), 95 (in Chinese).
张永, 黄超, 刘召, 等. 材料导报, 2016, 30(5), 95.
25 Lin F Y, Shao H S. Wear, 1991, 141(2), 279.
26 Zhou Y J, Zhang Y, Kim T N, et al. Materials letters, 2008, 62(17-18), 2673.
27 Zaddach A J, Niu C, Koch C C, et al. Journal of Metals, 2013, 65(12), 1780.
28 Qiu Y, Thomas S, Fabijanic D, et al. Materials and Design, 2019, 170, 107698.
29 Jiang H, Jiang L, Qiao D X, et al. Journal of Materials Science & Technology, 2016, 33(7), 712.
[1] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[2] 马晶博, 王涛, 陈冲, 熊美, 肖利强, 魏世忠, 毛丰, 张程. 高熵合金涂层对铝/钢液固复合双金属组织和性能的影响[J]. 材料导报, 2023, 37(15): 22010067-8.
[3] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[4] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[5] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[6] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[7] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[8] 王晓昱, 贾建刚, 刘第强, 巨佳康, 柴昌盛, 季根顺. 基于Si-CaO/Al2O3-Si三明治结构的碳/碳复合材料高强度扩散连接[J]. 材料导报, 2022, 36(13): 21040028-6.
[9] 郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
[10] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[11] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[12] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[13] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[14] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[15] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed