Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21040028-6    https://doi.org/10.11896/cldb.21040028
  无机非金属及其复合材料 |
基于Si-CaO/Al2O3-Si三明治结构的碳/碳复合材料高强度扩散连接
王晓昱1, 贾建刚1,2,*, 刘第强3, 巨佳康1, 柴昌盛4, 季根顺1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 中国科学院兰州化学物理研究所材料磨损与防护重点实验室,兰州 730000
4 甘肃郝氏炭纤维有限公司,兰州 730000
High-strength Diffusion Bonding of Carbon/Carbon Composites Based on Si-CaO/Al2O3-Si Sandwich Structure
WANG Xiaoyu1, JIA Jiangang1,2,*, LIU Diqiang3, JU Jiakang1, CHAI Changsheng4, JI Genshun1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4 Gansu Haoshi Carbon Fiber Co., Ltd., Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 8896KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在碳/碳(简称C/C)复合材料表面依次铺设Si、CaO/Al2O3微晶玻璃(简称CA)和Si浆料,形成一种三明治结构的涂层,经热压扩散连接实现C/C复合材料自身连接。C/C复合材料和玻璃陶瓷之间的润湿性差,而Si与C具有良好的亲和性,因此希望通过Si和基体C在高温下原位生成SiC,同时Si和CA接触扩散并进行化学反应形成硅酸盐玻璃,使得采用微晶玻璃来连接C/C复合材料成为可能。对接头的微观组织结构和力学性能进行了研究,结果表明:随着保温时间延长,接头连接层上的裂纹和孔洞减少,连接层变得更为致密。在1 480 ℃、0.5~1 MPa及保温90 min的工艺条件下,所得接头在室温下的剪切强度达30.45 MPa。熔融的中间层产物与C/C复合材料具有较好的浸润性,并渗透填充到C/C复合材料基体的空隙中形成了“钉扎结构”,从而提高了接头的剪切强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓昱
贾建刚
刘第强
巨佳康
柴昌盛
季根顺
关键词:  碳/碳复合材料  CaO/Al2O3微晶玻璃  扩散连接  组织结构  剪切强度    
Abstract: Asandwich structure layer is formed by sequentially laying Si, CaO/Al2O3 glass-ceramics (referred to as CA) and Si slurry coatings on the surface of the carbon/carbon (referred to as C/C) composites. Joining of the C/C composites to itself is realized by hot press diffusion bonding. The wettability between C/C composites and glass-ceramics is poor, whereas Si and C have a good affinity. It is thus expected that SiC is generated through in-situ reaction between Si and C matrix under high temperature, while Si and CA undergo mutual diffusion and chemical reaction to form silicate glass. By this means, glass-ceramics can be used to join C/C composites. The microstructure and mechanical properties of the joints were studied. Results show that the cracks and holes on the joint connecting layer are reduced and the connecting layer becomes denser with the extension of the heat preservation time. Under the conditions of 1 480 ℃, 0.5—1 MPa and holding time of 90 min, the shear strength of the resulting joint at room temperature reaches 30.45 MPa. The molten interlayer product has good wettability with the C/C composites, and penetrates the voids of the C/C composites matrix to form a ‘pinning structure’, thereby improving the shear strength of the joints.
Key words:  carbon/carbon composites    CaO/Al2O3 glass-ceramics    diffusion bonding    organizational structure    shear strength
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TB332  
通讯作者:  * jiajg@lut.edu.cn   
作者简介:  王晓昱,2018年6月毕业于兰州理工大学金属材料工程专业,获得工学学士学位。2018年9月至今,于兰州理工大学攻读硕士学位,研究方向为碳基复合材料及其扩散连接。
贾建刚,教授,工学博士。1996年9月—2000年6月,于甘肃工业大学金属材料及热处理专业获工学学士学位;2003年9月—2006年6月,于兰州理工大学(原甘肃工大)材料物理与化学专业获工学硕士学位;2005年9月—2008年6月,于兰州理工大学材料学专业获工学博士学位。主持国家自然科学基金项目2项。主要研究领域为碳基复合材料及多孔材料、新型金属基复合材料等。
引用本文:    
王晓昱, 贾建刚, 刘第强, 巨佳康, 柴昌盛, 季根顺. 基于Si-CaO/Al2O3-Si三明治结构的碳/碳复合材料高强度扩散连接[J]. 材料导报, 2022, 36(13): 21040028-6.
WANG Xiaoyu, JIA Jiangang, LIU Diqiang, JU Jiakang, CHAI Changsheng, JI Genshun. High-strength Diffusion Bonding of Carbon/Carbon Composites Based on Si-CaO/Al2O3-Si Sandwich Structure. Materials Reports, 2022, 36(13): 21040028-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040028  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21040028
1 Hou Z H, He M Y, Luo R Y, et al. New Carbon Materials, 2015, 30(4), 364(in Chinese).
侯振华, 郝名扬, 罗瑞盈,等. 新型炭材料, 2015, 30(4), 364.
2 Li H J. New Carbon Materials, 2001(2), 79(in Chinese).
李贺军.新型炭材料, 2001(2), 79.
3 Pan X Y. Research on processing and mechanism of brazing C/C compo-site and TC4 titanium alloy.Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
潘辛禹. C/C复合材料与TC4的钎焊工艺及机理研究.硕士学位论文, 哈尔滨工业大学, 2017.
4 Jin L G. Synthetic Fiber, 2009, 38(10), 1(in Chinese).
金立国.合成纤维, 2009, 38(10), 1.
5 Lan F T, Li K Z, Li H J, et al. Materials Reports A:Review Papers, 2009, 23(4), 9(in Chinese).
兰逢涛, 李克智, 李贺军,等. 材料导报:综述篇, 2009, 23(4), 9.
6 Su J M, Yang J, Xiao Z C, et al. New Carbon Materials, 2006(1), 81(in Chinese).
苏君明, 杨军, 肖志超,等. 新型炭材料, 2006(1), 81.
7 Zhang X Y. Interfacial stress analysis and structure design for C/C composite and Cu joints.Master's Thesis, Central South University, China, 2012 (in Chinese).
张小英. C/C复合材料与Cu连接界面应力分析及结构设计.硕士学位论文, 中南大学, 2012.
8 Qiu D, Bi J X, Mao J Y. Welding, 2017(4), 39(in Chinese).
邱东, 毕建勋, 毛建英.焊接, 2017(4), 39.
9 Li Y J. Electric Welding Machine, 2020, 50(9), 103(in Chinese).
李亚江.电焊机, 2020, 50(9), 103.
10 Long W M, Li S N, Sheng Y X, et al. Rare Metal Materials and Enginee-ring, 2020, 49(8), 2683(in Chinese).
龙伟民, 李胜男, 沈元勋,等. 稀有金属材料与工程, 2020, 49(8), 2683.
11 Yi Z H, Yang K Z, Xiang J, et al. Materials Research and Application, 2008(3), 215(in Chinese).
易振华, 杨凯珍, 向杰, 等.材料研究与应用, 2008(3), 215.
12 Zhao F, Fu Q, Wang L, et al. Materials Science & Engineering A, 2016, 663, 56.
13 Li J L, Xiong J T, Zhang F S. Materials Science & Engineering A, 2006, 483, 698.
14 Qin Y Q, Feng J. Materials Science & Engineering A, 2007, 454, 322.
15 Zhou X B, Yang H, Chen F, et al. Carbon, 2016, 102, 106.
16 Ferraris M, Salvo M, Casalegno V, et al. Journal of Nuclear Materials, 2011, 417(1-3), 379.
17 Casalegno V, Kondo S, Hinoki T, et al. Journal of Nuclear Materials, 2018, 501, 172.
18 Pan W P, Kang H. Ceramics, 2018(10), 45(in Chinese).
潘文平, 康浩.陶瓷, 2018(10), 45.
19 Jia J G, Zhang B, Liu D Q, et al. Journal of Alloys and Compounds, 2020, 818, 152847.
20 Li J, Luo R, Bi Y, et al. Carbon, 2008, 46(14), 1957.
21 Zhu W W, Chen J C. Journal of Inorganic Materials, 2015, 30(12), 1310(in Chinese).
朱巍巍, 陈继春.无机材料学报, 2015, 30(12), 1310.
22 Geetha K, Umarji A M, Kutty T R N. Bulletin of Materials Science, 2000, 23(4), 243.
23 Lan F, Li K, Li H, et al. Journal of Alloys and Compounds, 2009, 480(2), 747.
[1] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[2] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[3] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[4] 郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
[5] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[6] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[7] 王铁军, 张龙戈, 车洪艳, 董浩, 郑天明, 周双双, 王学远. Cu中间层对GH4099与Mo-Cu合金HIP扩散焊接头的影响[J]. 材料导报, 2021, 35(2): 2098-2102.
[8] 刘璇, 徐红艳, 李红, 徐菊, Hodúlová Erika, Kovaříková Ingrid. 应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.
[9] 曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
[10] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[11] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[12] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[13] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[14] 成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
[15] 肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed