Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19116-19124    https://doi.org/10.11896/cldb.20040187
  金属与金属基复合材料 |
应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展
刘璇1, 徐红艳2, 李红1, 徐菊2, Hodúlová Erika3, Kovaříková Ingrid3
1 北京工业大学材料科学与工程学院,北京 100124
2 中国科学院电工研究所微纳加工与智能电气设备研究部,北京 100190
3 斯洛伐克工业大学材料科学与技术学院,斯洛伐克,特尔纳瓦州 91701
Current Research in Transient Liquid Phase Bonding Materials and Joint Reliability for Power Chip Packaging
LIU Xuan1, XU Hongyan2, LI Hong1, XU Ju2, Hodúlová Erika3, Kovaříková Ingrid3
1 College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
2 Department of Micro-nano Fabrication Technology and Intelligent Electronics Devices, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
3 Slovak University of Technology in Bratislava, Trnava 91701, Slovakia
下载:  全 文 ( PDF ) ( 4618KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 功率半导体由于其工作电压高、电流大、放热量大等特点,已逐渐向小型化、高致密化发展。新一代宽禁带半导体器件因其优异的性能可以提高工作温度和功率密度,展现出较好的应用前景,这对与之匹配的电力封装材料提出了更高的要求。
随着工作温度的不断升高,高温环境下失稳和运行环境不稳定等安全问题亟需解决,对功率半导体芯片封装接头的高温可靠性提出了更高的要求。且由于污染严重的高铅焊料不满足环保要求,高温无铅焊料的研制与对相应连接技术的研究成为当前的研究重点。
瞬态液相扩散连接(Transient liquid phase bonding,TLP bonding)技术通过在低温下焊接形成耐高温金属间化合物接头,以满足“低温连接,高温服役”的要求,在新一代功率半导体的耐高温封装方面有良好的应用前景。针对TLP技术的耐高温封装材料有Sn基、In基和Bi基等。目前TLP连接材料主要有片层状、焊膏与焊片三种形态。其中片层状TLP焊料应用最早,且国内外对于其连接机理、接头性能和可靠性已有较为成熟的研究。近些年开发的基于复合粉末的焊膏与焊片形态TLP焊料具有相对较高的反应效率,但仍需大量理论与实验研究来验证其工业应用前景。
本文综述了TLP连接用Sn基与In基焊料的特点,重点阐述了不同形态焊料在TLP连接机理、接头微观组织、力学性能与结构可靠性等方面的国内外研究现状及进展,并且认为接头中缺陷问题的研究以及不同服役条件下物相转化机制和接头失效机理的研究对高可靠性接头的制备具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘璇
徐红艳
李红
徐菊
Hodúlová Erika
Kovaříková Ingrid
关键词:  瞬态液相扩散连接  功率芯片  耐高温封装  焊料  接头可靠性    
Abstract: Power semiconductors have gradually developed towards miniaturization and high densification due to their high working voltage, large current and large heat dissipation. The new generation of wide bandgap semiconductor devices can increase the operating temperature and power density, showing a good application prospect, which puts forward higher requirements for matching power packaging materials.
With the continuous increase of operating temperature, the safety issues such as instability and unstable operating environment under high temperature need to be solved, which puts forward higher requirements for the high temperature reliability of power chip packaging. The research of lead-free solder and the corresponding joining technology is the focus of current research because high-lead solder is not environmentally friendly.
Transient liquid phase bonding (TLP bonding) technology can meet the requirements of “low-temperature bonding and high-temperature ser-vice” by forming high-melting-resistant intermetallic compounds joints at low temperatures, and has good application prospects in high-temperature packaging of the new generation of power semiconductors. The high temperature resistant packaging materials for TLP bonding include Sn-based, In-based and Bi-based, etc. At present, TLP bonding materials mainly have the form of lamination, solder paste and preform. Among them, laminated solder was first applied to TLP bonding, and there have been relatively mature researches on bonding mechanism and joint performance and reliability. In recent years, solder paste and preform based on the composite powder have relatively high reaction efficiency. However, sufficient theoretical and experimental studies are needed to verify its industrial application prospects.
The characteristics of Sn-based and In-based solder for TLP bonding are reviewed. The status and progress of TLP bonding mechanism, the microstructure of joints, mechanical properties and structural reliability of different solders are presented. The study for inhibition of defects in the joint, the phase transformation mechanism and failure mechanism of the joint under different service conditions will be significant in the preparation of high-reliability joints.
Key words:  transient liquid phase bonding    power chip    high-temperature packaging    solder    structural reliability
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TG425  
基金资助: 国家自然科学基金(51777203);碳基纳米材料北京市国际科技合作基地项目;2021年度北京工业大学国际科研合作种子基金项目(A14)
通讯作者:  hyxu@mail.iee.ac.cn; hongli@bjut.edu.cn   
作者简介:  刘璇,2018年6月毕业于北京工业大学,获得工学学士学位。现为北京工业大学材料科学与工程学院硕士研究生,在李红副教授和中国科学院电工研究所徐红艳的指导下进行研究。目前主要研究方向为功率芯片的瞬态液相扩散焊接。
徐红艳,中国科学院电工研究所高级工程师。2011年毕业于中国科学院过程工程研究所。2011—2015年期间就职于北京矿冶研究总院金属材料研究所,从事材料表面科学与工程方面的研究。2015年至今就职于中国科学院电工研究所,主要从事电力电子封装用耐高温封装材料与瞬态液相扩散焊接技术,已发表文章20余篇,申请发明专利5项。
李红,北京工业大学材料科学与工程学院副教授,硕士研究生导师。2006年获北京科技大学材料加工工程专业博士学位,2006—2008年在北京工业大学材料学院做博士后研究,2012—2013年在德国多特蒙德工业大学做国家公派访问学者。2013年起担任国际焊接学会(IIW)钎焊扩散焊专业委员会(C-XVII)软钎焊分委会副主席。主要研究方向为钎焊、异种材料连接和微纳连接等,已发表论文70余篇,授权国家专利16项。
引用本文:    
刘璇, 徐红艳, 李红, 徐菊, Hodúlová Erika, Kovaříková Ingrid. 应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.
LIU Xuan, XU Hongyan, LI Hong, XU Ju, Hodúlová Erika, Kovaříková Ingrid. Current Research in Transient Liquid Phase Bonding Materials and Joint Reliability for Power Chip Packaging. Materials Reports, 2021, 35(19): 19116-19124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040187  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19116
1 Li J, Johnson C M, Buttay C, et al. Journal of Materials Processing Technology, 2015, 215, 299.
2 Paknejad S A, Mannan S H. Microelectronics Reliability, 2017, 70, 1.
3 Li K, Evans P, Johnson M. IET Electrical Systems in Transportation, 2018, 8(1), 3.
4 Kim B J, Ryu D S, Jeon H, et al. In: IEEE 69th Electronic Components and Technology Conference (ECTC). Las Vegas, 2019, pp. 1457.
5 Zhang S Y, Qi X Q, Ming Y, et al. Journal of Materials Science: Mate-rials in Electronics, 2019, 30, 9171.
6 Yu C Y, Yang D S, Zhao D L, et al. In: 20th International Conference on Electronic Packaging Technology (ICEPT). Hongkong,2019,pp.143.
7 Qiao J, Chen X P, Tan C J. In: 20th International Conference on Electronic Packaging Technology (ICEPT). Hongkong, 2019, pp. 385.
8 Pei L S, Pan B, Zhang H, et al. In: International Conference on Electronics Packaging (ICEP). Yamagata, 2017, pp. 51.
9 Manikam V R, Kuan Y C. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4), 457.
10 Zhang H, Minter J, Lee N C. Journal of Electronic Materials, 2018, 48(1), 201.
11 Anderson I E, Choquette S, Reeve K T, et al. In: 2018 Pan Pacific Microelectronics Symposium (Pan Pacific). Big Island, 2018.
12 Reeve K N, Holaday J R, Choquett S M, et al. Journal of Phase Equi-libria and Diffusion, 2016, 37(4), 369.
13 Feng H L, Huang J H, Chen S H, et al. Transactions of The China Wel-ding Institution, 2016, 37(1), 120(in Chinese).
冯洪亮, 黄继华, 陈树海, 等. 焊接学报, 2016, 37(1), 120.
14 Morelle J M, Tan K L, Vivet L, et al. In: 2012 7th International Confe-rence on Integrated Power Electronics Systems (CIPS). Nuremberg, 2012, pp. 1.
15 Moeller E, Bajwa A A, Rastjagaev E, et al. In: 2014 Electronic Components & Technology Conference. Florida, 2014, pp. 1707.
16 Hutter M, Weber C, Ehrhardt C, et al. In: 2016 9th International Conference on Integrated Power Electronics Systems (CPIS). Nuremberg, 2016, pp. 1.
17 Bajwa A A, Moller E, Wilde J. In: IEEE Electronic Components & Technology Conference. San Diego, 2015, pp. 2168.
18 Zhang H, Nagao S, Suganuma K. Journal of Electronic Materials, 2015, 44(10), 3896.
19 Aasmundtveit K E, Luu T T, Tollefsen T A, et al. In: 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). Budapest, 2016, pp. 1.
20 Lynch J F, Feinstein L, Huggins R A. Welding Journal, 1959, 38(2), 85s.
21 Samavatian M, Halvaee A, Amadeh A, et al. Journal of Materials Engineering and Performance, 2015, 24(6), 2526.
22 Shakerin S, Maleki V, AlirezaZiaei S, et al. Canadian Metallurgical Quarterly, 2017, 56(3), 360.
23 Pouranvari M, Ekrami A, Kokabi A H. Journal of Alloys and Compounds, 2008, 461(1-2), 641.
24 Lai Z, Pan C, Du H, et al. Science and Technology of Welding and Joi-ning, 2017, 23(1), 19.
25 Alhazaa A, Khan T I, Haq I. Materials Characterization, 2010, 61(3), 312.
26 Xiong Y, Wang H, Fu Z. Journal of the European Ceramic Society, 2013, 33, 2199.
27 Nami H, Halvaee A, Adgi H. Materials & Design, 2011, 32(7), 3957.
28 Zhao W, Yao Q. In:18th International Conference on Electronic Packaging Technology (ICEPT). Harbin, 2017, pp. 1229.
29 Park J H, Park J, Paik K W. In: IEEE 69th Electronic Components and Technology Conference (ECTC). Las Vegas, 2019, pp. 2213.
30 Zhang S Y, Kim S H, Kim T W, et al. IEEE Transactions on Component, Packaging and Manufacturing Technology, 2015, 5, 9.
31 Zhang S Y, Paik K W. IEEE Transactions on Component, Packaging and Manufacturing Technology, 2016, 6, 216.
32 Tian H. Study on the interfacial reaction of transient liquid phase bonding for the applications of high-temperature power device packing. Master's thesis, Harbin Institute of Technology, 2018(in Chinese).
田皓. 应用于高温功率芯片封装的过渡液相连接界面反应机理研究. 硕士学位论文, 哈尔滨工业大学, 2018.
33 Feng H L, Huang J H, Zhang J, et al. In: IEEE 17th Electronics Packaging Technology Conference. Singapore, 2015, pp. 1.
34 Feng H L, Huang J H, Peng X, et al. Journal of Electronic Materials, 2018, 47(8), 4642.
35 Feng H L, Huang J H, Yang J, et al. Electronic Materials Letters, 2017, 13(6), 489.
36 Greve H, Moeini S A, McCluskey F P, et al. In: IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas, 2016, pp. 2561.
37 Tatsumi H, Lis A, Yamaguchi H, et al. Applied Sciences, 2019, 9(1), 157.
38 Lee B S, Hyun S K, Yoon J W. Journal of Materials Science: Materials in Electronics, 2017, 28(11), 7827.
39 Ehrhardt C, Hutter M, Oppermann H, et al. In: IEEE 64th Electronic Components and Technology Conference (ECTC). Orlando, 2014, pp. 1321.
40 Lis A, Leinenbach C. Journal of Electronic Materials, 2015, 44 (11), 4576.
41 Guo Q, Yu F, Chen H, et al. Journal of Materials Science: Materials in Electronics, 2017, 29(4), 3014.
42 Shao H, Wu A, Bao Y, et al. Journal of Materials Science, 2016, 52(6), 3508.
43 Shao H, Wu A, Bao Y, et al. Microelectronics Reliability, 2018, 91, 38.
44 Tollefsen T A, Larsson A, Lovvik O M, et al. Metallurgical and mate-rials transaction B, 2012, 43, 397.
45 Park S, Nagao S, Kato Y, et al. Journal of Alloys and Compounds, 2015, 637, 143.
46 Muhammad K F, Yamamoto T, Yoshida M. Journal of Materials Science: Materials in Electronics, 2017, 28(13), 9351.
47 Yang C, Yang S, Liu X, et al. Journal of Alloys and Compounds, 2018, 762, 586.
48 Zhang W, Ruythooren W. Journal of Electronic Materials, 2008, 37(8), 1095.
49 Cho J, Sheikhi R, Mallampati S, et al. In: IEEE 67th Electronic Components and Technology Conference (ECTC). Orlando,2017,pp.1553.
50 Grummel B J, Shen Z J, Mustain H A, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(5), 716.
51 Lis A. High power electronics packaging by transient liquid phase bon-ding. Ph.D. Thesis, Eth Zurich, Germany, 2015.
52 Li J F, Agyakwa P A, Johnson C M. Acta Materialia, 2011, 59, 1198.
53 Cook G O, Sorensen C D. Journal of Materials Science, 2011, 46(16), 5305.
54 Lugscheider E, Bobzin K, Maes M, et al. Surface and Coatings Techno-logy, 2005, 200(1-4), 444.
55 Feisst M, Kustermann J, Schumacher A, et al. In: 42nd International Spring Seminar on Electronics Technology (ISSE). 2019, pp. 1.
56 Bajwa A A, Wilde J. Microelectronics Reliability, 2016, 60, 116.
57 Yoon S W, Shiozaki K, Yasuda S, et al. In: Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Orlando, 2012, pp. 478.
58 Natzke P, Grossner U, Janczak-Rusch J, et al. In: IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). Albuquerque, 2017, pp. 165.
59 Li Z L, Dong H J, Song X G, et al. Ultrasonics Sonochemistry, 2018, 42, 403.
60 Li Z L, Dong H J, Song X G, et al. Ultrasonics Sonochemistry, 2017, 36, 420.
61 Zhao H, Liu J, Li Z, et al. Journal of Alloys and Compounds, 2017, 692, 552.
62 Greve H, Chen L Y, Fox I, et al. In: IEEE 63rd Electronic Components and Technology Conference (ECTC). Las Vegas, 2013, pp. 435.
63 Fujino M, Narusawa H, Kuramochi Y, et al. Japanese Journal of Applied Physics, 2016, 55(4S), 04EC14.
64 Shi S P. Preparation and soldering performance of high temperature lead-free Cu-Sn solder paste. Master's thesis, Northeastern University, 2014(in Chinese).
石帅朋. 高温无铅Cu-Sn焊膏的制备与性能研究. 硕士学位论文, 东北大学, 2014.
65 Syed-Khaja A, Franke J. In: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg, 2015, pp. 1.
66 Ehrhardt C, Hutter M, Hermann O, et al. High Temperature Electronics Conference (HiTEC). 2012, pp. 1.
67 Liu X, He S, Nishikawa H. Scripta Materialia, 2016, 110, 101.
68 Yang J, Wu Z B, Huang Y, et al. Chemical Research and Application, 2006, 18(5), 472(in Chinese).
杨剑, 吴志兵, 黄艳, 等.化学研究与应用, 2006, 18(5), 472.
69 Khaja A S, Franke J. In:9th International Conference on Integrated Power Electronics Systems (CIPS). Berlin, 2016, pp. 1.
70 Hu T Q, Chen H T, Li M Y. Materials and Design, 2016, 108, 383.
71 Chen H, Hu T, Li M, et al. IEEE Transactions on Power Electronics, 2017, 32(1), 441.
72 Xu H Y, Zhou R H, Ning P Q, et al. Advanced Technology of Electrical Engineering and Energy, 2018, 37(10), 39(in Chinese).
徐红艳, 周润晖, 宁圃奇, 等. 电工电能新技术, 2018, 37(10), 39.
73 Shao H, Wu A, Bao Y, et al. Materials Science and Engineering: A, 2018, 724, 231.
74 Hamilton D P. In:9th International Conference on Integrated Power Electronics Systems (CPIS). Berlin, 2016, pp. 1.
75 Brincker M, Söhl S, Eisele R, et al. Microelectronics Reliability, 2017, 76-77, 378.
76 Garnier A, Gremion C, Franiatte R, et al. In:IEEE 63rd Electronic Components and Technology Conference. Las Vegas, 2013, pp. 2151.
77 Lee J B, Hwang H Y, Rhee M W. Journal of Electronic Materials, 2014, 44(1), 435.
78 Kato F, Lang F, Nakagawa H, et al. In: International Conference on Electronics Packaging (ICEP). Yamagata, 2017, pp. 125.
79 Moeini S A, Greve H, McCluskey F P. In: IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA). Blacksburg, 2015, pp. 383.
80 Greve H, Moeini S A, McCluskey F P. In:IEEE 64th Electronic Components and Technology Conference (ECTC). Orlando, 2014, pp. 1314.
[1] 王蒙, 张冠星, 钟素娟, 程战, 李文彬. Mg对Sn-0.7Cu钎料组织及性能的影响[J]. 材料导报, 2021, 35(10): 10147-10151.
[2] 浦娟, 薛松柏, 张雷, 吴铭方, 龙伟民, 王水庆, 钱似舰, 林铁松. CeO2对Ag30CuZnSn药芯银钎料润湿性能及钎焊接头组织与性能的影响[J]. 材料导报, 2021, 35(8): 8134-8139.
[3] 李木兰, 张亮, 姜楠, 孙磊, 熊明月. 纳米颗粒对无铅钎料改性的研究进展[J]. 材料导报, 2021, 35(5): 5130-5139.
[4] 龙伟民, 郝庆乐, 傅玉灿, 黄国钦, 吴铭方, 王裕昌. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138-23144.
[5] 王子伊, 薛松柏, 王剑豪, 刘晗, 温丽. 添加合金元素改善Au-Ge钎料组织及性能的研究进展[J]. 材料导报, 2020, 34(23): 23145-23153.
[6] 薛松柏, 刘思怡, 刘露, 钟素娟, 龙伟民. 固化剂对树脂基Sn-58Bi复合焊膏铺展性能的影响[J]. 材料导报, 2020, 34(22): 22172-22177.
[7] 薛海涛, 魏鑫, 郭卫兵, 张新宇. 活性元素Al对超声波钎焊Mo接头组织和力学性能的影响规律[J]. 材料导报, 2020, 34(20): 20103-20106.
[8] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[9] 姜楠, 张亮, 熊明月, 赵猛, 徐恺恺. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(23): 3862-3875.
[10] 吴杰, 薛松柏, 费文潘, 韩翼龙, 张鹏. 铝/钢异种材料钎焊研究现状与发展趋势[J]. 材料导报, 2019, 33(21): 3533-3540.
[11] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[12] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[13] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[14] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[15] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed