Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23145-23153    https://doi.org/10.11896/cldb.19070262
  金属与金属基复合材料 |
添加合金元素改善Au-Ge钎料组织及性能的研究进展
王子伊, 薛松柏, 王剑豪, 刘晗, 温丽
南京航空航天大学材料科学与技术学院,南京 211106
Research Progress of Adding Alloying Elements to Improve the Microstructure and Properties of Au-Ge Solder
WANG Ziyi, XUE Songbai, WANG Jianhao, LIU Han, WEN Li
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
下载:  全 文 ( PDF ) ( 26981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现如今电子行业纷纷开展了无铅钎料的研究工作,但是对用于高温环境下的无铅钎料的研究十分有限。对于熔化温度在280~400 ℃范围内的无铅钎料,Au-Sn、Au-Ge、Au-Si等金基钎料已逐步代替传统的高铅钎料,被广泛应用于微电子的耐高温封装领域。其中,Au-Ge合金具有良好的导电性、导热性、耐腐蚀性和高抗拉强度等优点,其耐高温性能明显优于Au-Sn、Au-Si钎料,尤其适用于高温环境。然而,Au-Ge钎料固有的缺点严重影响了其生产应用:一方面,由于Ge元素的存在,Au-Ge合金脆性较大,导致其难以加工成型,产品性能差、成品率低,严重影响了该钎料的推广使用。另一方面,Au-Ge钎料中Au含量较高,使得其成本高昂。因此,除了寻找最佳的Au-Ge钎料的加工方法外,研究者们也纷纷向Au-Ge钎料中加入适当的合金元素进行改性,开发出多种金锗基多元合金体系。
对于Au-Ge合金很脆,难以加工成型的问题,研究人员发现水平连铸的方法可以省去加工过程,直接连铸出所需的直径,降低损耗,保证钎料质量。研究者们除了研究Au-Ge二元合金外,还纷纷开展了Au-Ge-X三元合金体系的研究。研究表明,一些低熔点的元素,如Sn、Sb、In等,可以有效降低钎料的熔点。与Au-12Ge合金相比,Sn、Sb元素的加入不仅可以降低钎料合金熔化温度,保持良好的润湿性能,还可抑制界面层的过度生长,从而避免对电性能和力学性能带来的不利影响。其中,添加适量的Sn元素还可以抑制Ge相的长大粗化,提高其高温性能。添加适量的Sb元素能改善Au-Ge钎料的延展性能。Au-Ge-Ni合金可以和GaAs材料形成欧姆连接,提高钎料的电阻率,在钎缝和母材之间形成“等电阻率”过渡,提高钎焊接头强度。但是,在Au-12Ge合金中加入过量的Ni元素会形成粗大的GeNi化合物,该化合物集聚后颗粒变大且分布不均匀,严重降低钎焊接头的强度。在Au-Ge钎料中加入In、Sb元素还可起到细化晶粒的作用。目前,对Au-Ge系三元合金的研究十分有限,在润湿性能、力学性能、焊点可靠性等方面需做进一步的研究。
本文介绍了Au-Ge基钎料的研究现状,重点分析了Sn、Ni、In、Sb元素对Au-Ge钎料组织及性能的影响。此外,本文分析总结了Au-Ge基钎料在生产使用中存在的问题以及主要的解决方法,展望了该钎料的未来研究方向,以期为Au-Ge基钎料在高温封装领域的应用提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王子伊
薛松柏
王剑豪
刘晗
温丽
关键词:  Au-Ge钎料  微观组织  润湿性能  细化晶粒  力学性能    
Abstract: Recently, lead-free solders have received considerable attention in electronic industry. However, only a small proportion of significant research relates to solders in high temperature environment. For lead-free solders with melting temperature in the range of 280—400 ℃, Au-Ge, Au-Sn, Au-Si and other Au-based solders have gradually replaced the traditional high lead solders and are widely used in the filed of microelectronic packages. Au-Ge alloy has the advantages of good conductivity, thermal conductivity, corrosion resistance and high tensile strength. What’ more, the high-temperature resistant performance of Au-Ge solder is obviously better than that of Au-Sn, Au-Si solders, especially suitable for the high temperature environment. Nonetheless, there are some shortcomings of Au-Ge solder, which seriously affect its production, application and popularization. On the one hand, Au-Ge solder is difficult to be machined due to the existence of Ge, which critically affects its application. On the other hand, excessive Au content in Au-Ge solder leads to its high cost. Consequently, researchers add appropriate alloy elements to modify Au-Ge filler metal and try to develop Au-Ge ternary alloys system.
Researchers found that the method of horizontal continuous casting can eliminate machining process and directly produce the desired diameter to solve the processing problem caused by the high brittleness of the Au-Ge alloy. In addition to the study of Au-Ge binary alloy, researchers have also carried out that of Au-Ge-X ternary alloys system. The research shows that the addition of low melting point elements, such as Sn, Sb, and In, can effectively reduce the melting point of solder and meet the quality requirements. Compared with Au-12Ge alloy, the addition of Sn and Sb elements can not only reduce the melting temperature and maintain good wettability, but also inhibit the excessive growth of the interface layer. Among them, appropriate Sn element can also inhibit the coarseness of Ge grains. Sb element can increase the extensibility of Au-Ge solder. Au-Ge-Ni alloy can form ohmic contact with GaAs, which will increases the resistance of the solder bulk. Besides, Au-Ge-Ni solder can form “equal resistance” between soldering seam and base metal to play a better role in bonding. However, if excessive Ni is added to Au-12Ge alloy, coarse GeNi compounds will be formed. After agglomeration, the particles will become large and unevenly distributed, which will seriously affect the strength of joints. The addition of In, Sb elements to Au-Ge solder can also play a role in grain refinement. Up to now, the study of Au-Ge ternary alloys is insufficient and further research on the wettability, mechanical properties and solder joint reliability are need to be carried out to promote its application.
In this paper, the research status of Au-Ge based ternary alloys was summarized and introduced. What’s more, the effects of Sn, Ni, In, Sb elements on the properties and microstructures of Au-Ge solder were analyzed. On the basis of summing up the existing literature, this paper looked forward to the general development process and future development direction of Au-Ge based ternary alloys, pointing out the existing problems and solutions.
Key words:  Au-Ge solder    microstructure    wettability    grain refinement    mechanical property
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TG425  
基金资助: 国家自然科学基金(51675269);江苏高校优势学科建设工程资助项目
通讯作者:  xuesb@nuaa.edu.cn   
作者简介:  王子伊,2018年6月毕业于南京航空航天大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院硕士研究生,在薛松柏教授的指导下进行研究。目前主要研究领域为先进封装材料。
薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士研究生导师,享受政府特殊津贴专家。长期以来专注于焊接材料及焊接工艺的研究,制定五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。获得2016年国家科技进步奖二等奖、2014年教育部技术发明二等奖、国防科技进步奖三等奖、江苏省科技进步三等奖等。
引用本文:    
王子伊, 薛松柏, 王剑豪, 刘晗, 温丽. 添加合金元素改善Au-Ge钎料组织及性能的研究进展[J]. 材料导报, 2020, 34(23): 23145-23153.
WANG Ziyi, XUE Songbai, WANG Jianhao, LIU Han, WEN Li. Research Progress of Adding Alloying Elements to Improve the Microstructure and Properties of Au-Ge Solder. Materials Reports, 2020, 34(23): 23145-23153.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070262  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23145
1 Neoh G P, Thong K C, Khor L. In: 36th International Electronics Manufacturing Technology Conference. Johor Bahru,2014,pp.1.
2 Gomidželović L, Živković D, Talijan N, et al. Materials Research Innovations,2015,19(2),145.
3 Liu W, An R, Wang C, et al. Micromachines,2018,9(7),346.
4 Abtew M, Selvaduray G. Materials Science & Engineering R: Reports,2000,27(5),95.
5 Wang F, Li D, Tian S, et al. Microelectronics Reliability,2017,73,106.
6 Bao N, Hu X, Li Q. Materials Research Express,2019,6(7),076306.
7 Gan G, Xia D, Liu X, et al. Soldering & Surface Mount Technology,2019,31(2),85.
8 Wang F, Chen H, Huang Y, et al. Journal of Materials Science: Mate-rials in Electronics,2019,30(4),3222.
9 Zhang X P, Yin L M, Yu C B. Chinese Journal of Materials Research,2008,22(1),1(in Chinese).
张新平,尹立孟,于传宝.材料研究学报,2008,22(1),1.
10 Hodúlová E, šimeková B, Kovaíková I, et al. Welding in the World,2014,58(5),719.
11 Mookam N, Tunthawiroon P, Kanlayasiri K. In: IOP Conference Series: Materials Science and Engineering. San Diego,2018,pp.012008.
12 Menon S, George E, Osterman M, et al. Journal of Materials Science: Materials in Electronics,2015,26(6),4021.
13 Son M J, Kim M, Lee T M, et al. Journal of Materials Processing Technology,2018,259,126.
14 Son M J, Jeong J W, Kim H, et al. Journal of Materials Science: Mate-rials in Electronics,2018,29(23),19620.
15 El-Daly A A, Ibrahiem A A, Hammad A E. Journal of Alloys and Compounds,2018,767,464.
16 Gumaan M S, Shalaby R M, Mohammed Yousef M K, et al. Soldering & Surface Mount Technology,2019,31(1),40.
17 Plevachuk Y, Tkach O, Svec P, et al. Journal of Phase Equilibria and Diffusion,2019,40(1),86.
18 Fang J H, Xie M, Zhang J M, et al. The Chinese Journal of Nonferrous Metals,2017(8),1659(in Chinese).
方继恒,谢明,张吉明,等.中国有色金属学报,2017(8),1659.
19 Wang Y, Wu Y, Xia X, et al. Japanese Journal of Applied Physics.2019,58,SDDL03.
20 Rerek T, Skowronski L, Kobierski M, et al. Applied Surface Science,2018,451,32.
21 Yamamoto S, Matsumaru K, Suemasu T. IEEJ Transactions on Sensors and Micromachines,2006,126,649.
22 Zhu Z X, Li C C, Liao L L, et al. Journal of Alloys and Compounds,2016,671,340.
23 Kisiel R, Myśliwiec M. In: 41st International Spring Seminar on Electronics Technology (ISSE). Zlatibor,2018,pp.1.
24 Ismail A M, Samu G F, Balog A, et al. ACS Energy Letters,2018,4(1),48.
25 Tobón J, Serna-Giraldo C P, Sánchez H. Welding International,2015,29(8),594.
26 Larsson A, Tollefsen T A, Løvvik O M, et al. Metallurgical and Materials Transactions A,2019,50(10),4632.
27 Zhang L G, Xu K, Zhao M, et al. Precious Metals,2014,35(3),71(in Chinese).
张利广,许昆,赵明,等.贵金属,2014,35(3),71.
28 Hu Y F, Li X X, Yu S L, et al. Electric Welding Machine,2008,38(9),57(in Chinese).
胡永芳,李孝轩,禹胜林,等.电焊机,2008,38(9),57.
29 ivkovic' D, C' ubela D, Manasijevic' D, et al. Materials Testing,2017,59(2),118.
30 Zhu Y, Yang A H, Zhang J X, et al. Special Casting & Nonferrous Alloys,2015,35(10),1077(in Chinese).
朱勇,阳岸恒,张济祥,等.特种铸造及有色合金,2015,35(10),1077.
31 Zhu W X, Zhu L Y, Li G L, et al. Precious Metals,2014(S1),164(in Chinese).
朱武勋,朱利亚,李光俐,等.贵金属,2014(S1),164.
32 Chidambaram V, Hattel J, Hald J. Microelectronic Engineering,2011,88(6),981.
33 Xu L J, Li X X, Liu G, et al. Modern Radar,2010(12),60(in Chinese).
许立讲,李孝轩,刘刚,等.现代雷达,2010(12),60.
34 Chidambaram V, Yeung H B, Shan G. Journal of Electronic Materials,2012,41(8),2107.
35 Gerbi A, Gonzalez C, Buzio R, et al. Physical Review B,2018,98(20),205416.
36 Wagner T, Aulbach J, Schäfer J, et al. Physical Review Materials,2018,2(12),123402.
37 Wang J, Liu Y J, Tang C Y, et al. Thermochimica Acta,2011,512(1),240.
38 Li J, Acoff V L, Gong X. Gold Bulletin,2015,48(1),47.
39 Yang A H, Xie H C. Precious Metals,2007,28(1),63(in Chinese).
阳岸恒,谢宏潮.贵金属,2007,28(1),63.
40 Lang F, Yamaguchi H, Ohashi H, et al. Journal of Electronic Materials,2011,40(7),1563.
41 Lau F L, Made R I, Putra W N, et al. Microelectronics Reliability,2013,53(9),1581.
42 Li Y Z, Mao X, Shi X, et al. Scientia Sinica(Physica,Mechanica & Astronomica),2019,49(1),76(in Chinese).
李玉智,毛鑫,石轩,等.中国科学:物理学 力学 天文学,2019,49(1),76.
43 Gaudet S, Detavernier C, Kellock A J, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,2006,24(3),474.
44 Li K, Hou B, Bian H, et al. Fuel,2019,252,281.
45 Zhang S, Qi X, Yang M, et al. Journal of Materials Science: Materials in Electronics,2019,30(10),9171.
46 Weyrich N, Jin S, Duarte L I, et al. Journal of Materials Engineering and Performance,2014,23(5),1585.
47 Wang J, Cui J, Kou H C, et al. Rare Metals,2019,38(1),52.
48 Leinenbach C, Valenza F, Giuranno D, et al. Journal of Electronic Materials,2011,40(7),1533.
49 Wang J, Leinenbach C, Roth M. Journal of Alloys and Compounds,2009,481(1),830.
50 Zhang Y S, Xu R M, Liu D H, et al. Journal of Shandong University(Engineering Science),1994,24(4),372(in Chinese).
张玉生,许汝民,刘东红,等.山东工业大学学报,1994,24(4),372.
51 Xie H C, Yang A H, Zhuang D X, et al. Precious Metals,2011,32(1),35(in Chinese).
谢宏潮,阳岸恒,庄滇湘,等.贵金属,2011,32(1),35.
52 Li Z, Yi Y, He D, et al. Metals,2017,7(7),247.
53 Li Z H, Yi Y P, He D Q. Ordnance Material Science and Engineering,2017(5),41(in Chinese).
李再华,易幼平,贺地求.兵器材料科学与工程,2017(5),41.
54 Jin S, Duarte L I, Huang G, et al. Monatshefte für Chemie-Chemical Monthly,2012,143(9),1263.
55 Liu S F, Tan G H, Xiong J R, et al. Special Casting & Nonferrous Alloys,2016,36(8),785(in Chinese).
刘生发,谭广华,熊杰然,等.特种铸造及有色合金,2016,36(8),785.
56 Li Y, Zheng P J, Zhang J B, et al. Materials Reports A: Research Papers,2014,28(11),108(in Chinese).
李勇,郑碰菊,张建波,等.材料导报:综述篇,2014,28(11),108.
57 Wang J, Leinenbach C, Roth M. Journal of Alloys and Compounds,2009,485(1),577.
58 Zeng G, McDonald S, Nogita K. Microelectronics Reliability,2012,52(7),1306.
59 Chidambaram V, Hald J, Hattel J. Journal of Alloys and Compounds,2010,490(1),170.
60 Weyrich N, Leinenbach C. Journal of Materials Science,2013,48(20),7115.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed