Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23154-23164    https://doi.org/10.11896/cldb.19100102
  金属与金属基复合材料 |
Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望
马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚
华北理工大学冶金与能源学院,唐山 063210
Progress on Strengthening Mechanism and Tensile Properties of Fe-Mn-Al-C Low Density Steel and Prospect of Nb Microalloying
MA Tao, LI Huirong, GAO Jianxin, WANG Xufeng, SONG Hongwei, LI Yungang
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
下载:  全 文 ( PDF ) ( 8909KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽车工业的发展在带来经济社会进步的同时也造成了严重的能耗与污染问题,开发轻量化且高强度的汽车用钢,对降低燃油效率、减少污染物排放有积极的意义。Fe-Mn-Al-C低密度钢因其密度低、力学性能优良等优点,在汽车结构材料领域具有广阔的应用前景。而Fe-Mn-Al-C低密度钢的力学性能,特别是拉伸性能的优劣会直接影响该材料在汽车领域的应用前景。
然而,基于合金元素含量变化及由此引起的组成相差异,Fe-Mn-Al-C低密度钢在受力变形过程中,其变形及强化机制也会发生变化。在不同的强化机制作用下,Fe-Mn-Al-C低密度钢的拉伸性能也会产生差异,从而影响其使用性能。因此,近年来科技工作者对Fe-Mn-Al-C低密度钢的强化机制与拉伸性能开展了深入研究,并取得了一定的成果。
研究结果表明,铁素体Fe-Al低密度钢的强化机制主要为固溶强化,由于不存在相变硬化性,其强度及延伸率均处在较低水平。随着Mn、C等奥氏体元素浓度的增加,Fe-Mn-Al-C钢在固溶条件下获得的微观结构中奥氏体体积分数不断增加,强化机制逐渐转变为δ-铁素体的应变硬化与奥氏体晶粒的挛晶诱导塑性(TWIP)、马氏体相变诱导塑性(TRIP)效应共同作用和位错平面滑移机制,其强度与延展性随之升高。在Al、Mn含量较高的奥氏体Fe-Mn-Al-C钢中,κ-碳化物的析出及其与位错运动的相互作用所产生的沉淀硬化效应为其重要的强化机制,使奥氏体Fe-Mn-Al-C钢获得最佳的强韧性组合。
本文基于国内外研究进展,分析总结了不同类型Fe-Mn-Al-C低密度钢的强化机制与拉伸性能。总结认为奥氏体Fe-Mn-Al-C低密度钢组织稳定性强,且具备优良的强韧性组合,应变硬化能力突出,应是未来Fe-Mn-Al-C低密度钢发展过程中的研究重点。但奥氏体Fe-Mn-Al-C低密度钢在应用过程中的强化相可控性差,易造成材料塑性损失。基于铌元素微合金化特性及FactSage热力学计算结果,提出铌微合金化奥氏体Fe-Mn-Al-C低密度钢可在保持现有优势的同时提升材料力学性能可控性,具有一定的研究意义与前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马涛
李慧蓉
高建新
王旭峰
宋宏伟
李运刚
关键词:  Fe-Mn-Al-C低密度钢  强化机制  拉伸性能  κ-碳化物      
Abstract: The development of the automobile industry has brought about serious energy and pollution problems while bringing economic and social progress. Developing lightweight and high-strength steel for automotive industry is particularly important due to reduce fuel efficiency and redu-cing pollutant emissions. Due to the low density and excellent mechanical properties, Fe-Mn-Al-C low density steel has broad application prospects in the field of automotive structural materials. The mechanical properties of Fe-Mn-Al-C low-density steel, especially the tensile properties, will directly affect the application prospect of the material in the automotive field.
However, based on the change of alloying element content and the resulting composition phase difference, the deformation and strengthening mechanism of Fe-Mn-Al-C low-density steel will also change during the process of stress deformation. Under the action of different strengthening mechanisms, the tensile properties of Fe-Mn-Al-C low-density steel will also be different, which will affect its performance. Therefore, in recent years, scientific and technological workers have carried out in-depth research on the strengthening mechanism and tensile properties of Fe-Mn-Al-C low-density steel, and achieved certain results.
The results show that the strengthening mechanism of ferritic Fe-Al low-density steel is mainly solid solution strengthening, and its strength and elongation are at a low level due to the absence of phase transformation hardenability. With the increase of austenite element concentration such as Mn and C, the volume fraction of austenite in the microstructure obtained by Fe-Mn-Al-C steel under solid solution conditions increases conti-nuously, that lead the strengthening mechanism gradually transformed into the strain hardening of δ-ferrite combined with the TWIP and TRIP effects of austenite grains or the dislocation plane slip mechanism, and also leads to an increase in strength and ductility. In austenitic Fe-Mn-Al-C steel with high Al and Mn contents, the precipitation of kappa-carbide and its interaction with dislocation motion lead to the precipitation harde-ning effect, and become an important strengthening mechanisms of austenitic Fe-Mn-Al-C steel, and makes the austenitic Fe-Mn-Al-C steel get the best combination of strength and toughness.
Based on the related research at home and abroad, the strengthening mechanism and tensile properties of different types of Fe-Mn-Al-C low density steel have been summarized based on the research progress in recent years. The results show that austenitic Fe-Mn-Al-C low density steel has strong structural stability, excellent combination of toughness and hardness, and outstanding strain hardening ability, which make it the focus of future research. However, the austenitic Fe-Mn-Al-C low-density steel has poor controllability in the application process, which is easy to cause loss of material properties. Based on the microalloying characteristics of Nb and the thermodynamic calculation results of FactSage, it is proposed that Nb microalloyed austenitic Fe-Mn-Al-C low density steel can improve the controllability of material mechanical properties while maintaining the existing advantages, and probably a new possibility for the development of the Fe-Mn-Al-C low density steel.
Key words:  Fe-Mn-Al-C low density steel    strengthening mechanism    tensile properties    kappa-carbide    Nb
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51974129)
通讯作者:  lyg@ncst.edu.cn   
作者简介:  马涛,2017年3月毕业于华北理工大学,获得工学硕士学位。现为华北理工大学冶金与能源博士研究生,在李运刚教授的指导下进行研究。目前主要研究领域为低密度钢组织性能优化。
李运刚,华北理工大学冶金与能源学院教授、博士研究生导师。1985年5月本科毕业于东北大学有色冶金专业,获工学硕士学位,2005年9月在东北大学冶金物理化学专业取得博士学位。长期从事冶金过程理论与工艺、新型金属材料以及资源综合利用的研究开发工作。承担国家科技支撑计划项目2项,国家自然科学基金6项,河北省自然科学基金、支撑计划项目4项及横向科研课题40余项;发表学术论文130余篇,被SCI、EI收录40余篇;出版专著及教材4部;取得国际先进水平以上的鉴定成果6项;申报发明专利16项,授权10项;获省科技进步、自然科学或优秀教学成果奖4项。
引用本文:    
马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
MA Tao, LI Huirong, GAO Jianxin, WANG Xufeng, SONG Hongwei, LI Yungang. Progress on Strengthening Mechanism and Tensile Properties of Fe-Mn-Al-C Low Density Steel and Prospect of Nb Microalloying. Materials Reports, 2020, 34(23): 23154-23164.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100102  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23154
1 Rahnama A, Dashwood R, Sridhar S. Computational Materials Science,2017,126,152.
2 Tang D, Mi Z L, Chen Y L. Iron & Steel,2005,40(6),1(in Chinese).
唐荻,米振莉,陈雨来.钢铁,2005,40(6),1.
3 Ding H, Yang P. Journal of Materials & Metallurgy,2010,9(4),265(in Chinese).
丁桦,杨平.材料与冶金学报,2010,9(4),265.
4 Kim H, Suh D W, Kim N J. Science & Technology of Advanced Materials,2013,14,1.
5 Howell R A, Aken D C V. Iron and Steel Technology,2009,6(4),193.
6 Moon J, Park S J, Jang J H, et al. Scripta Materialia,2017,127,97.
7 Xing J, Wei Y, Hou L. Journal of Metals,2018,70(6),929.
8 Song H, Yoo J, Kim S H, et al. Acta Materialia,2017,135,215.
9 Yang M X, Yuan F P, Xie Q G, et al. Acta Materialia,2016,109,213.
10 Li X, Ma T, Cao Y P, et al. Hot Working Technology,2018,47(6),15(in Chinese).
李欣,马涛,曹玉鹏,等.热加工工艺,2018,47(6),15.
11 Lehnhoff G R, Findley K O, Cooman B C D. Scripta Materialia,2014,92,19.
12 Frommeyer G, Brüx U. Steel Research International,2006,77(9-10),627.
13 Min C H, Koo J M, Lee J K, et al. Materials Science and Engineering A,2013,586(6),276.
14 Yang Y, Zhang J L, Hua C H, et al. Materials Science and Engineering A,2019,748,74.
15 Wang Z G, Zhou W, Fu L M, et al. Materials Science and Engineering A,2017,696,503.
16 Castan C, Montheillet F, Perlade A. Scripta Materialia,2013,68,360.
17 Rana R, Liu C, Ray R K. Scripta Materialia,2013,68,354.
18 Brüx U, Frommeyer G, Jimenez J. Steel Research International,2012,73,543
19 Zargaran A, Kim H, Kwak J H, et al. Scripta Materialia,2014,89,37.
20 Yoo J D, Park K T. Materials Science and Engineering A,2008,496,417.
21 Park K T. Scripta Materials,2013,68(6),375.
22 Yoo J D, Hwang S W, Park K T. Metallurgical and Materials Transactions A,2009,40(7),1520.
23 Lin C L, Chao C G, Juang J Y, et al. Journal of Alloys and Compounds,2014,586(4),616.
24 Gutierrez-Urrutia I, Raabe D. Materials Science and Technology,2014,30(9),1099.
25 Welsch E, Ponge D, Haghighat S M H, et al. Acta Materialia,2016,116,188.
26 Seo C H, Kwon K H, Choi K, et al. Scripta Materialia,2012,66(8),519.
27 Lee S, Jeong J, Lee Y K. Journal of Alloys and Compounds,2015,648,149.
28 Sohn S S, Choi K, Kwak J H, et al. Acta Materialia,2014,78(5),181.
29 Sohn S S, Song H, Kim J G, et al. Metallurgical and Materials Transactions A,2016,47(2),706
30 Sohn S S, Song H, Suh B C, et al. Acta Materialia,2015,96,301.
31 Cai Z H, Ding H, Misra R D K, et al. Materials Science and Enginee-ring A,2014,595(595),86.
32 Yang F, Song R, Li Y, et al. Materials and Design,2015,76,32.
33 Jung I C, Cho L, De Cooman B C. ISIJ International,2015,55(4),870.
34 Etienne A, Massardier-Jourdan V, Cazottes S, et al. Metallurgical and Materials Transactions A,2014,45(1),324.
35 Park K T, Si W H, Chang Y S, et al. Journal of Metals,2014,66(9),1828.
36 Zhao C, Song R, Zhang L, et al. Materials and Design,2016,91(1),348.
37 Herrmann J, Inden G, Sauthoff G. Acta Materialia,2003,51,2847.
38 Morris D G, Munoz-Morris M G, Requejo L M. Materials Science and Engineering A,2007,460-461,163.
39 Zambrano O A, Valdés, J, Aguilar Y, et al. Materials Science and Engineering A,2017,689,269.
40 Song W, Ingendahl T, Bleck W. Acta Metallurgica Sinica (English Letters),2014,27(3),546.
41 Yao M J, Dey P, Seol J B, et al. Acta Materialia,2016,106,229.
42 Cheng W C, Song Y S, Lin Y S, et al. Metallurgical & Materials Transactions A,2014,45(3),1199.
43 Lu W J, Qin R S. Materials & Design,2016,104,211.
44 Moon J, Park S J, Lee C, et al. Metallurgical and Materials Transactions A,2017,48,4500.
45 Lee K, Park S J, Lee J, et al. Journal of Alloys and Compounds,2015,656,805.
46 Dey P, Nazarov R, Dutta B, et al. Physical Review B,2017,95(10),104.
47 Liu L, Li C, Yang Y, et al. Materials Science and Engineering A,2017,679,282.
48 Hyejin S, Yunik K, Su S S, et al. Materials Science and Engineering A,2018,730,177.
49 Sato K, Tagawa K, Inoue Y. Metallurgical Transactions A,1990,21(1),5.
50 Park K T, Jin K G, Han S H, et al. Materials Science and Engineering A,2010(527),3651.
51 Sutou Y, Kamiya N, Umino R, et al. ISIJ International,2010,50(6),893.
52 Kim C W, Kwon S I, Lee B H. Materials Science and Engineering A,2016,673,108.
53 Kalashnikov I S, Acselrad O, Pereira L C. Journal of Materials Engineek-ring and Performance,2000,9,597.
54 Lu W J, Zhang X F, Qin R S. Materials Letters,2015,138,96.
55 Moon J, Ha H Y, Park S J, et al. Journal of Alloys and Compounds,2019,775,1136.
56 Jeong S, Park G, Kim B, et al. Materials Science and Engineering A,2019,742,61.
57 Wu Z Q, Ding H, An X H, et al. Materials Science and Engineering A,2015,639,187.
58 Lee J, Park S, Kim H, et al. Metals and Materials International,2018,24,702.
59 Liu D, Cai M, Ding H, et al. Materials Science and Engineering A,2018,715,25.
60 Han J, Nam J H, Lee Y K. Acta Materialia,2016,113,1.
61 Kim C, Kwon S, Lee B, et al. Materials Science and Engineering A,2016,673,108.
62 Jeong S, Kim B, Moon J, et al. Materials Science and Engineering A,2018,726,223.
63 Xu Y P. Effect of heat treatment on the microstructure and properties of automobile high-strength low-density steel. Master’s Thesis, Chongqing University, China,2017(in Chinese).
徐越鹏.热处理对汽车用高强低密度钢组织及性能的影响.硕士学位论文,重庆大学,2017.
64 Choo W K, Kim J H, Yoon J C. Acta Materialia,1997,45,4877.
65 Chang K M, Chao C G, Liu T F. Scripta Materialia,2010,63,162.
66 Lin C L, Chao C G, Bor H Y, et al. Materials Transactions,2010,51,1084.
67 Yang F Q. Research on the preparation technology and deformation me-chanism of automobile light-weight Fe-Mn-Al high strength steel. Ph. D. Thesis, University of Science & Technology Beijing, China,2015(in Chinese).
杨富强.汽车用Fe-Mn-Al系轻质高强钢制备工艺及变形机理研究.博士学位论文,北京科技大学,2015.
68 Hwang S W, Ji J H, Lee E G, et al. Materials Science and Engineering A,2011,528(15),196.
69 Zhang L, Song R, Zhao C, et al. Materials Science and Engineering A,2015,640,225.
70 Zhang L, Song R, Zhao C, et al. Materials Science and Engineering A,2015,643,183.
71 Chen S, Rana R, Haldar A, et al. Progress in Materials Science,2017,89,345.
72 Ding H, Li H Y, Ding H, et al. Journal of Iron and Steel Research,2012,19(9),68.
73 Powell D J, Pilkington R, Miller D A. Acta Metallurgica,1988,36(3),713.
74 Wang M, Sun H, Phaniraj M P, et al. Materials Science and Enginee-ring A,2016,672,23.
75 Yamamoto Y, Brady M P, Santella M L, et al. Metallurgical and Mate-rials Transactions A,2011,42(4),922.
76 Li H Z, Zhang X W, Zhu C L, et al. Rare Metal Materials and Enginee-ring,2016(7),1740(in Chinese).
李海昭,张熹雯,朱春雷,等.稀有金属材料与工程,2016(7),1740.
77 Tian H, Zhou J, Gong W J, et al. Rare Metal Materials and Engineering,2017(12),3994(in Chinese).
田航,周军,公维佳,等.稀有金属材料与工程,2017(12),3994.
[1] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[2] 谢锐, 吕铮, 徐长伟, 刘春明. 钛元素对9Cr氧化物弥散强化钢微观组织和拉伸性能的影响[J]. 材料导报, 2020, 34(22): 22111-22117.
[3] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[4] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[5] 马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
[6] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[7] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[8] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[9] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[10] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[11] 王义飞, 高东强, 田普建, 任威, 刘延辉, 宋文杰, 杨艳玲, 杨光. 高铌TiAl合金中包晶α相消除的热力学及动力学分析[J]. 材料导报, 2019, 33(12): 2014-2018.
[12] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[13] 周燕燕, 周鑫, 陈长安, 王维, 王占雷, 饶咏初, 梁传辉, 周元林. 氢、氘在铌膜中的渗透性研究[J]. 材料导报, 2018, 32(15): 2596-2600.
[14] 贾建刚, 高昌琦, 刘第强, 季根顺, 薛向军, 郭铁明, 郝相忠. 表面镀Ni碳纤维增强Cu基复合材料的制备和表征[J]. 《材料导报》期刊社, 2018, 32(14): 2462-2466.
[15] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed