Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 24030268-16    https://doi.org/10.11896/cldb.24030268
  无机非金属及其复合材料 |
汗液发电:原理、器件结构及应用
戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰*, 李林*
厦门大学柔性电子(未来技术)研究院,福建 厦门 361005
Sweat-powered Electricity: Principles, Device Structures and Applications
DAI Jiangxuan, JI Wenhui, LU Jiacheng, XIE Ruijie*, LI Lin*
Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
下载:  全 文 ( PDF ) ( 13137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可穿戴设备作为一种新兴科技产品,已在健康监测、人机交互和航天航空等领域展现出巨大的应用潜力。然而,大多数可穿戴设备的能源供给方式仍采用传统的纽扣电池或锂电池组供电,此类电池刚性大、体积臃肿、储能量有限、寿命短,严重限制了可穿戴设备的应用及推广。人体排汗的连续性以及汗液中包含了大量的电解质和代谢物,使得汗液成为可穿戴器件持续能源供给的潜在来源。汗液电池是一种利用人体汗液作为燃料进行供电的新型技术,具有轻薄柔软、反应条件温和、生物相容性高、可穿戴等优点。本综述旨在全面总结汗液电池的工作原理、材料特性、器件结构与最新进展,以期为柔性汗液电池的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴江炫
姬文辉
卢嘉铖
谢瑞杰
李林
关键词:  汗液发电  柔性可穿戴器件  水伏效应  生物燃料电池    
Abstract: Wearable devices, as an emerging technology product, have shown great application potential in the fields of health monitoring, human-computer interaction, and aerospace. However, most wearable devices are still powered by traditional button batteries or lithium battery packs, which are rigid, bulky, with limited energy storage and short lifespan, severely limiting the application and promotion of wearable devices. The continuity of human perspiration and the fact that sweat contains a large amount of electrolytes and metabolites make it a potential source of continuous energy supply for wearable devices. Sweat battery is a new technology that utilizes human sweat as fuel to provide power, which has the advantages of lightness, softness, mild reaction conditions, highly biocompatible and wearable. This review aims to comprehensively summarize the working principles, device structures, and latest application progress of sweat batteries, hoping to provide a guide for the development of flexible sweat batteries.
Key words:  sweat-powered electricity    flexible wearable device    hydrovoltaic effects    biofuel cell
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TK6  
基金资助: 国家自然科学基金(62288102;22077101)
通讯作者:  *谢瑞杰,厦门大学柔性电子(未来技术)研究院助理教授。聚焦“可拉伸多模态纤维传感器”研究。iferjxie@xmu.edu.cn;李林,厦门大学柔性电子(未来技术)研究院教授、博士研究生导师,国家级青年人才,“中国青年化学家元素周期表Mc元素”代言人。聚焦 “线粒体信息与健康工程”研究。ifelli@xmu.edu.cn   
作者简介:  戴江炫,现于厦门大学柔性电子(未来技术)研究院李林教授课题组攻读硕士学位,聚焦“面向健康工程的柔性汗液电子器件”研究。
引用本文:    
戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
DAI Jiangxuan, JI Wenhui, LU Jiacheng, XIE Ruijie, LI Lin. Sweat-powered Electricity: Principles, Device Structures and Applications. Materials Reports, 2025, 39(2): 24030268-16.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030268  或          https://www.mater-rep.com/CN/Y2025/V39/I2/24030268
1 Nahavandi D, Alizadehsani R, Khosravi A, et al. Computer Methods and Programs in Biomedicine, 2022, 213, 106541.
2 Sun Y, Li Y Z, Yuan M. Nano Energy, 2023, 115, 108715.
3 Nozariasbmarz A, Collins H, Dsouza K, et al. Applied Energy, 2020, 258, 114069.
4 Hao D, Qi L, Tairab A M, et al. Renewable Energy, 2022, 188, 678.
5 Khalid S, Raouf I, Khan A, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6, 821.
6 Mink J E, Qaisi R M, Logan B E, et al. NPG Asia Materials, 2014, 6, e89.
7 Pourshaban E, Banerjee A, Karkhanis M U, et al. Advanced Materials Technologies, 2023, 8, 2200518.
8 Wang L, Su Q, Liu Y, et al. Chemical Science, 2022, 13, 12136.
9 Baker L B. Temperature, 2019, 6, 211.
10 Gao F, Liu C, Zhang L, et al. Microsystems & Nanoengineering, 2023, 9, 1.
11 Zhong B, Jiang K, Wang L, et al. Advanced Science, 2022, 9, 2103257.
12 Ling Y, An T, Yap L W, et al. Advanced Materials, 2020, 32, 1904664.
13 Dong K, Jia B, Yu C, et al. Biosensors and Bioelectronics, 2013, 41, 916.
14 Chen H, Simoska O, Lim K, et al. Chemical Reviews, 2020, 120, 12903.
15 Ghaffari R, Rogers J A, Ray T R. Sensors and Actuators B: Chemical, 2021, 332, 129447.
16 Mohammadifar M, Tahernia M, Yang J H, et al. Nano Energy, 2020, 75, 104994.
17 Mohammadifar M, Choi S. Advanced Materials Technologies, 2017, 2, 1700127.
18 Ryu J, Choi S. Biosensors and Bioelectronics, 2021, 186, 113293.
19 Ryu J, Landers M, Choi S. Biosensors and Bioelectronics, 2022, 205, 114128.
20 Yahiro A T, Lee S M, Kimble D O. Biochimica et Biophysica Acta, 1964, 88, 375.
21 Suzuki A, Mano N, Tsujimura S. Electrochimica Acta, 2017, 232, 581.
22 Agnès C, Reuillard B, Le Goff A, et al. Electrochemistry Communications, 2013, 34, 105.
23 Zebda A, Alcaraz J P, Vadgama P, et al. Bioelectrochemistry, 2018, 124, 57.
24 Huang X, Zhang L, Zhang Z, et al. Biosensors and Bioelectronics, 2019, 124, 40.
25 Sokic-Lazic D, de Andrade A R, Minteer S D. Electrochimica Acta, 2011, 56, 10772.
26 Courjean O, Gao F, Mano N. Angewandte Chemie International Edition, 2009, 121, 6011.
27 Meredith M T, Minteer S D. Annual Review of Analytical Chemistry, 2012, 5, 157.
28 Gross A J, Holzinger M, Cosnier S. Energy & Environmental Science, 2018, 11, 1670.
29 Lee H, Hong Y J, Baik S, et al. Advanced Healthcare Materials, 2018, 7, 1701150.
30 Manjakkal L, Yin L, Nathan A, et al. Advanced Materials, 2021, 33, 2100899.
31 Haque S U, Duteanu N, Ciocan S, et al. Journal of Environmental Ma-nagement, 2021, 298, 113483.
32 Xiao X, Xia H, Wu R, et al. Chemical Reviews, 2019, 119, 9509.
33 Yin J, Li X, Yu J, et al. Nature Nanotechnology, 2014, 9, 378.
34 Zhang Z, Li X, Yin J, et al. Nature Nanotechnology, 2018, 13, 1109.
35 Shen D, Duley W W, Peng P, et al. Advanced Materials, 2020, 32, 2003722.
36 Zheng C, Chu W, Fang S, et al. Interdisciplinary Materials, 2022, 1, 449.
37 Danford M D, Levy H A. Journal of the American Chemical Society, 1962, 84, 3965.
38 Matsui H, Suzuki Y, Fukumochi H, et al. Journal of the Physical Society of Japan, 2014, 83, 054708.
39 Riddick T M. Journal-American Water Works Association, 1961, 53, 1007.
40 Dobrovolsky I P, Gershenzon N I, Gokhberg M B. Physics of the Earth and Planetary Interiors, 1989, 57, 144.
41 Quincke G. Annalen Der Physik, 1859, 183, 1.
42 Hsu W L, Daiguji H, Dunstan D E, et al. Advances in Colloid and Interface Science, 2016, 234, 108.
43 Yin J, Zhang Z, Li X, et al. Nature Communications, 2014, 5, 3582.
44 Huang Y, Cheng H, Qu L. ACS Materials Letters, 2021, 3, 193.
45 Gennes P G, Brochard-Wyart F, Quéré D. Physics Today, 2004, 57, 66.
46 Xue G, Xu Y, Ding T, et al. Nature Nanotechnology, 2017, 12, 317.
47 Gao W, Emaminejad S, Nyein H Y Y, et al. Nature, 2016, 529, 509.
48 Park J, Sempionatto J R, Kim J, et al. ACS Sensors, 2020, 5, 1363.
49 Liu X, Ueki T, Gao H, et al. Nature Communications, 2022, 13, 4369.
50 Guan H, Zhong T, He H, et al. Nano Energy, 2019, 59, 754.
51 Zhang W, Guan H, Zhong T, et al. Nano-micro Letters, 2020, 12, 1.
52 Lv J, Jeerapan I, Tehrani F, et al. Energy & Environmental Science, 2018, 11, 3431.
53 Jeerapan I, Sempionatto J R, Pavinatto A, et al. Journal of Materials Chemistry A, 2016, 4, 18342.
54 Liu Y, Huang X, Zhou J, et al. Nano Energy, 2022, 92, 106755.
55 Ju J, Xiao G, Jian Y, et al. Nano Energy, 2023, 109, 108304.
56 Jia W, Wang X, Imani S, et al. Journal of Materials Chemistry A, 2014, 2, 18184.
57 Serag E, El-Maghraby A, El Nemr A. Carbon Letters, 2022, 32, 395.
58 Minteer S D. International Materials Reviews, 2018, 63, 241.
59 Hartel M C, Lee D, Weiss P S, et al. Biosensors and Bioelectronics, 2022, 215, 114565.
60 Jia W, Valdés-Ramírez G, Bandodkar A J, et al. Angewandte Chemie International Edition, 2013, 52, 7233.
61 Yang Y, Su Y, Zhu X, et al. Biosensors and Bioelectronics, 2022, 198, 113833.
62 Bandodkar A J, You J M, Kim N H, et al. Energy & Environmental Science, 2017, 10, 1581.
63 Chen X, Yin L, Lv J, et al. Advanced Functional Materials, 2019, 29, 1905785.
64 Wu H, Xu L, Wang Y, et al. ACS Energy Letters, 2020, 5, 3708.
65 Bandodkar A J, Lee S P, Huang I, et al. Nature Electronics, 2020, 3, 554.
66 Wu M, Shi R, Zhou J, et al. Journal of Materials Chemistry A, 2022, 10, 19662.
67 Huang X, Liu Y, Zhou J, et al. npj Flexible Electronics, 2022, 6, 10.
68 Liu Y, Huang X, Zhou J, et al. Advanced Science, 2022, 9, 2104635.
69 Xiao G, Ju J, Lu H, et al. Advanced Science, 2022, 9, 2103822.
70 Zheng C, Fang S, Chu W, et al. Nano Research, 2023, 16, 11320.
71 Li L, Gao S, Hao M, et al. Nano Energy, 2021, 85, 105970.
72 Shao C, Ji B, Xu T, et al. ACS Applied Materials & Interfaces, 2019, 11, 30927.
73 Qin Y, Wang Y, Sun X, et al. Angewandte Chemie International Edition, 2020, 132, 10706.
74 Li L, Feng S, Bai Y, et al. Nature Communications, 2022, 13, 1043.
75 Li J, Liu K, Ding T, et al. Nano Energy, 2019, 58, 797.
76 Li L, Zheng Z, Ge C, et al. Advanced Materials, 2023, 35, 2304099.
77 Huangfu X, Guo Y, Mugo S M, et al. Small, 2023, 19, 2207134.
78 Logan B E, Rossi R, Ragab A, et al. Nature Reviews Microbiology, 2019, 17, 307.
79 Liu X, Gao H, Ward J E, et al. Nature, 2020, 578, 550.
80 Hu Q, Ma Y, Ren G, et al. Science Advances, 2022, 8, eabm8047.
81 Battat S, Weitz D A, Whitesides G M. Lab on a Chip, 2022, 22, 530.
82 Kashaninejad N, Nguyen N T. Lab on a Chip, 2023, 23, 913.
83 Lin P H, Nien H H, Li B R. Annual Review of Analytical Chemistry, 2023, 16, 181.
84 Li M, Wang L, Liu R, et al. Biosensors and Bioelectronics, 2021, 174, 112828.
85 Escalona-Villalpando R A, Reid R C, Milton R D, et al. Journal of Power Sources, 2017, 342, 546.
86 Huang X, Li J, Liu Y, et al. Bio-Design and Manufacturing, 2022, 5, 1.
87 Yin L, Sandhu S S, Liu R, et al. Advanced Energy Materials, 2023, 13, 2203418.
88 Yu Y, Nassar J, Xu C, et al. Science Robotics, 2020, 5, eaaz7946.
89 Luo G, Xie J, Liu J, et al. Small, 2024, 20, 2306318.
[1] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[2] 李文龙, 薛屏. 微生物燃料电池分隔材料的研究新进展[J]. 《材料导报》期刊社, 2018, 32(7): 1065-1072.
[3] 赵 兵, 祁 宁, 张德锁, 李青松, 张克勤. 适用于生物体系的自驱动纳米技术研究进展[J]. 材料导报, 2017, 31(1): 126-130.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed