Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23020010-5    https://doi.org/10.11896/cldb.23020010
  金属与金属基复合材料 |
Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究
全琪炜1, 刘向兵1,*, 赵文增2, 吴奕初2, 徐超亮1, 张晏玮1, 李远飞1, 钱王洁1, 贾文清1, 尹建1
1 苏州热工研究院有限公司,江苏 苏州 215000
2 武汉大学物理科学与技术学院,武汉430000
Study on Mechanical and Corrosion Properties of Zr-4 and Zr-1Nb Alloy After Xe Ions Irradiation
QUAN Qiwei1, LIU Xiangbing1,*, ZHAO Wenzeng2, WU Yichu2, XU Chaoliang1, ZHANG Yanwei1, LI Yuanfei1, QIAN Wangjie1, JIA Wenqing1, YIN Jian1
1 Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215000, Jiangsu, China
2 School of Physics and Technology, Wuhan University, Wuhan 430000, China
下载:  全 文 ( PDF ) ( 10486KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究两种典型燃料包壳锆合金Zr-4和Zr-1Nb辐照后的性能变化规律,本研究使用5.0 MeV的Xe离子室温辐照锆合金最高至4.0 dpa,并在360 ℃/18.6 MPa、0.01 mol/L LiOH溶液中开展最高28 d的腐蚀实验,结合纳米压痕、SEM和TEM,研究辐照硬化规律、腐蚀后的氧化膜形态及锆合金第二相的变化规律,讨论辐照对腐蚀的影响。结果表明,Xe离子辐照后两种锆合金产生了辐照硬化,Zr-1Nb比Zr-4辐照硬化率更高。在模拟环境腐蚀28 d内,Zr-4的耐腐蚀性优于Zr-1Nb,离子辐照增加了锆合金的腐蚀增重,且Zr-1Nb的辐照增强腐蚀效应更显著,辐照使锆合金第二相产生了不同程度的非晶化。研究结果有助于理解相关锆合金的辐照效应,为新型包壳锆合金材料开发及性能评估提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
全琪炜
刘向兵
赵文增
吴奕初
徐超亮
张晏玮
李远飞
钱王洁
贾文清
尹建
关键词:  锆合金  离子辐照  辐照硬化  耐腐蚀性能    
Abstract: In order to study the performance of two typical fuel cladding zirconium alloys Zr-4 and Zr-1Nb after irradiation, this study used 5.0 MeV Xe ions to irradiate the zirconium alloys up to 4.0 dpa at room temperature, and carried out the corrosion experiment at 360 ℃/18.6 MPa, 0.01 mol/L LiOH solution for 28 d. Combined with nano-indentation, SEM and TEM, the irradiation hardening effect, the morphology of oxidation film and the change of second phase were characterized, discussing the effect of irradiation on corrosion. The result showed that both zirconium alloys produced irradiation hardening after Xe ion irradiation, with Zr-1Nb being more significant than Zr-4. The corrosion resistance of Zr-4 was better than Zr-1Nb in 28 d of simulated environmental corrosion. Ions irradiation increased the corrosion weight gain and caused the second phase amorphous, and the irradiation enhancing corrosion effect was more pronounced for Zr-1Nb. The research could help understand the irradiation effects of zirconium alloys and provide a reference for the development of new cladding zirconium alloy materials.
Key words:  zirconium alloy    ions irradiation    irradiation harden    corrosion resistance
发布日期:  2024-10-12
ZTFLH:  TL341  
基金资助: 国家自然科学基金(11975171)
通讯作者:  *刘向兵,通信作者,中广核苏州热工研究院有限公司材料工程技术中心副总工,研究员级高级工程师、博士研究生导师。2010年1月毕业于北京科技大学,获材料学博士学位,兼任江苏省仪器仪表学会无损检测仪器专业委员会会员、北京粉末冶金研究会副理事长、电力行业电力锅炉压力容器安全监督管理委员会专家等。目前主要从事核结构材料辐照效应研究与核电老化管理的研究工作,主编/参编专著2本,发表学术论文90余篇。liuxbing@cgnpc.com.cn   
作者简介:  全琪炜,服役安全评价工程师,2020年6月毕业于东南大学,获得材料科学与工程专业工学硕士学位。2020年7月加入中广核苏州热工研究院有限公司,目前主要从事核燃料包壳锆合金的离子辐照效应、辐照缺陷缓解技术、增材制造核电材料的离子辐照效应的研究。
引用本文:    
全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
QUAN Qiwei, LIU Xiangbing, ZHAO Wenzeng, WU Yichu, XU Chaoliang, ZHANG Yanwei, LI Yuanfei, QIAN Wangjie, JIA Wenqing, YIN Jian. Study on Mechanical and Corrosion Properties of Zr-4 and Zr-1Nb Alloy After Xe Ions Irradiation. Materials Reports, 2024, 38(18): 23020010-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020010  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23020010
1 Sagiroun M, Cao X R, Helal W, et al. International Journal of Engineering Research in Africa, 2020, 46, 7.
2 Hu J, Li G, Zhang T G, et al. Metal World, 2020(3), 23 (in Chinese).
胡娟, 李刚, 张天广, 等. 金属世界, 2020(3), 23.
3 Pan R J, Tang A T, Wu L, et al. Material Sciences, 2019(9), 861 (in Chinese).
潘荣剑, 汤爱涛, 吴璐, 等. 材料科学, 2019(9), 861.
4 Yang Z F, Shi P, Ao B Y. Materials Reports, 2020, 34(5), 102 (in Chinese).
杨振飞, 史鹏, 敖冰云. 材料导报, 2020, 34(5), 102.
5 Tewari R, Krishna K, Neogy S, et al. Comprehensive Nuclear Materials, 2020, 7, 284.
6 Lemaignan C, Moan G D, Rudling P, et al. In:Zirconium in the Nuclear Industry:Thirteenth International Symposium. Annecy, 2002, pp.20.
7 Dykhuis A F, Short M P. Corrosion Science, 2019, 146, 179.
8 Romain V, Marc T, Gerard B, et al. Corrosion Science, 2015, 98, 327.
9 Markelov V, Novikov V, Shevyakov A, et al. In:Zirconium in the Nuclear Industry:18th International Symposium. Hilton Head, 2016, pp.857.
10 Was G S, Busby J T. Journal of Nuclear Materials, 2002, 300(2-3), 198.
11 Bererd N, Moncoffre N, Chevarier A, et al. Nuclear Instruments and Methods in Physics Research, 2006, 249B, 513.
12 Yang Z B, Cheng Z Q, Qiu J, et al. Nuclear Power Engineering, 2017, 38(5), 123 (in Chinese).
杨忠波, 程竹青, 邱军, 等. 核动力工程, 2017, 38(5), 123.
13 Yan C G. Research on microstructure and performance of zirconium alloys under ion irradiation. Ph.D. Thesis, University of Science and Technology Beijing, China, 2016 (in Chinese).
燕春光. 锆合金在离子辐照下的微观结构及性能的研究. 博士学位论文, 北京科技大学, 2016.
14 Bai R Y, Fan P, Xia H H, et al. Nuclear Physics Review, 2017, 34(3), 630 (in Chinese).
白若玉, 范平, 夏海鸿, 等. 原子核物理评论, 2017, 34(3), 630.
15 Bai R Y, Wang K, Bai Y K, et al. Atomic Energy Science and Technology, 2018, 52(11), 2020 (in Chinese).
白若玉, 王珂, 白亚奎, 等. 原子能科学技术, 2018, 52(11), 2020.
16 Pharr G M, Herbert E G, Gao Y F. Annual Review of Materials Research, 2010, 40, 271.
17 Nix W D, Gao H. Journal of the Mechanics and Physics of Solids, 1998, 46(3), 411.
18 Zhao W Z, Quan Q W, Zhang S M, et al. Radiation Physics and Chemistry, 2023, 209, 110986.
19 Zhou B X, Li Q, Huang Q, et al. Nuclear Power Engineering, 2000, 21(5), 439 (in Chinese).
周邦新, 李强, 黄强, 等. 核动力工程, 2000, 21(5), 439.
20 Nikulina A V, Markelov V A, Peregud M M, et al. In:Zirconium in the Nuclear Industry:Eleventh International Symposium. West Conshohocken, 1996, pp.785.
21 Chai L J, Luan B F, Zhou Y, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(6), 1594 (in Chinese).
柴林江, 栾佰峰, 周宇, 等. 中国有色金属学报, 2012, 22(6), 1594.
22 Zu X T, Sun K, Atzmon M, et al. Philosophical Magazine, 2005, 85(4-7), 649.
23 Griffiths M, Gilbert R W, Fidleris V, et al. Journal of Nuclear Materials, 1987, 150, 159.
24 Qiu R S, Luan B F, Chai L J, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(6), 1605 (in Chinese).
邱日盛, 栾佰峰, 柴林江, 等. 中国有色金属学报, 2012, 22(6), 1605.
25 Quan Q W, Liu X B, Xu C L, et al. Materials Reports, 2022, 36(S1), 375 (in Chinese).
全琪炜, 刘向兵, 徐超亮, 等. 材料导报, 2022, 36(S1), 375.
26 Yao M Y, Zhou B X. Journal of Shanghai University (Natural Science), 2020, 26(5), 681 (in Chinese).
姚美意, 周邦新. 上海大学学报:自然科学版, 2020, 26(5), 681.
27 Liao J J, Qiu S Y, Zhang J S, et al. Nuclear Power Engineering, 2020, 41(S1), 164 (in Chinese).
廖京京, 邱绍宇, 张君松, 等. 核动力工程, 2020, 41(S1), 164.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[3] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[4] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[5] 王亚恒, 左家栋, 王亚强, 张金钰, 吴凯, 刘刚, 孙军. 事故容错锆包壳表面FeCrAl合金涂层的研究进展[J]. 材料导报, 2024, 38(12): 22110325-11.
[6] 乔永丰, 雷玉成, 姚奕强, 朱强. 坡口形状对CLAM钢焊缝抗辐照损伤性能的影响[J]. 材料导报, 2024, 38(10): 22100080-8.
[7] 闫占峰, 郑健, 周韦, 王浩. 氦离子辐照下6061-Al合金中的氦泡行为研究[J]. 材料导报, 2024, 38(1): 22030107-7.
[8] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[9] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[10] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[11] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[12] 全琪炜, 刘向兵, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 吴奕初, 赵文增. 辐照后锆合金腐蚀与第二相非晶化研究概况[J]. 材料导报, 2022, 36(Z1): 21010255-6.
[13] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[14] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[15] 杨健乔, 恽迪, 刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报, 2022, 36(1): 20080283-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed