Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 22120226-9    https://doi.org/10.11896/cldb.22120226
  无机非金属及其复合材料 |
高钛矿渣在水泥混凝土中的研究应用进展
杨尊1,2, 李碧雄1,2,*, 张治博1,2, 李梁慧1,2
1 四川大学建筑与环境学院,成都 610065
2 四川大学深地科学与工程教育部重点实验室,成都 610065
Research Progress on Application of High Titanium Slag in Cement Concrete
YANG Zun1,2, LI Bixiong1,2,*, ZHANG Zhibo1,2, LI Lianghui1,2
1 College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2 Key Laboratory of Deep Earth Science and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 12962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 区别于普通高炉矿渣,高钛矿渣中TiO2含量较高、矿物组成差异大、利用率低。高钛矿渣大量堆存会造成资源浪费,且给生态环境带来严重负担,因此亟需实现其固废资源化利用。近年来,基于高钛矿渣的矿物成分和结构稳定、微火山灰活性、多孔、集料性能优良等特点,研究人员逐渐将其作为矿物掺合料、粗细骨料等应用于水泥混凝土中,实现高钛矿渣的高效利用以及提高其使用附加值,促进高钛矿渣在混凝土中的工程应用。本文系统梳理了高钛矿渣在水泥混凝土中的研究应用进展,对高钛矿渣的来源、物理化学性质、在混凝土中的利用方式,介绍了其对混凝土工作性能、力学性能、耐久性能等方面影响的研究进展,此外深入论述了高钛矿渣作为矿物掺合料以及再生骨料对混凝土性能的影响及作用机理。最后,针对现阶段研究中的不足提出相应建议,旨在为高钛矿渣在水泥混凝土中的研究和工程应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨尊
李碧雄
张治博
李梁慧
关键词:  高钛矿渣  水泥混凝土  理化性质  工作性能  力学性能  耐久性能    
Abstract: Differing from ordinary blast furnace slag, high titanium slag has a higher TiO2 content, large difference in mineral composition and a low utilization rate. High titanium slag has caused waste of resources and serious burden on the ecological environment because of its large stock and low utilization rate, so it is urgent to realize the utilization of solid waste resources. In recent years, based on the characteristics of high titanium slag such as stability of mineral composition and structure, micro-pozzolanic activity, porous and excellent aggregate performance, some researchers have gradually applied it as admixture, coarse and fine aggregates in cement concrete to realize the efficient utilization of high titanium slag and improve the added value of its use, and to promote the engineering application of high titanium slag in concrete. In this paper, the research and application progress of high titanium slag in cement concrete is systematically reviewed. The source, physical and chemical properties of high titanium slag, its utilization in concrete and its research progress on working performance, mechanical properties and durability of concrete are introduced. In addition, the influence and mechanism of high titanium slag as mineral admixture and recycled aggregate on concrete performance are discussed in depth. Finally, the corresponding suggestions are proposed according to the shortcomings in the current research, to provide reference for the research direction and engineering application of high titanium slag in cement concrete.
Key words:  high titanium slag    cement concrete    physicochemical property    workability    mechanical property    durability
发布日期:  2024-10-12
ZTFLH:  TU528  
基金资助: 四川省重点研发计划项目(2023YFQ0047)
通讯作者:  *李碧雄,通信作者,四川大学建筑与环境学院教授、博士研究生导师。1992年毕业于成都科技大学土木系获工业与民用建筑专业学士学位,1995年毕业于四川联合大学水电学院获岩土工程硕士学位,2005年在四川大学攻读岩土工程博士学位。主要从事土木工程的相关教学、科研工作,重点研究方向为工程结构震损机理、抗震性能评估及加固技术、工程结构物理脆弱性研究、基于材料电磁特性的混凝土检测技术、固废建材资源化和地热开发利用。主持国家自然基金面上项目、国家重点研发项目专题、四川省应用基础研究项目等多项,发表论文多篇。libix@126.com   
作者简介:  杨尊,2021年6月毕业于四川大学建筑与环境学院,获得工学学士学位。现为四川大学建筑与环境学院硕士研究生,在李碧雄教授的指导下进行研究。目前主要研究领域为固废建材资源化利用。
引用本文:    
杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
YANG Zun, LI Bixiong, ZHANG Zhibo, LI Lianghui. Research Progress on Application of High Titanium Slag in Cement Concrete. Materials Reports, 2024, 38(18): 22120226-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120226  或          http://www.mater-rep.com/CN/Y2024/V38/I18/22120226
1 JC/T 418-2009, Granulated blast furnace titanium slag used for cement, China Building Materials Press, China, 2009 (in Chinese).
JC/T 418-2009, 用于水泥中的粒化高炉钛矿渣, 中国建材工业出版社, 2009.
2 Wang S, Lyu S Z, Zhao J, et al. Journal of Southwest University of Science and Technology, 2021, 36(1), 28 (in Chinese).
王帅, 吕淑珍, 赵杰, 等. 西南科技大学学报, 2021, 36(1), 28.
3 Shi J, Qiu Y, Yu B, et al. JOM, 2022, 74(2), 654.
4 Chou S T, Zhang M B, Li J X, et al. Iron & Steel, 2016, 51(7), 1 (in Chinese).
仇圣桃, 张明博, 李建新, 等. 钢铁, 2016, 51(7), 1.
5 Xu Y, Li D D, Yang S S, et al. Multipurpose Utilization of Mineral Resources, 2021, 42(1), 23 (in Chinese).
许莹, 李单单, 杨姗姗, 等. 矿产综合利用, 2021, 42(1), 23.
6 Ren Q Q, Hao S J, Jiang W F, et al. Applied Mechanics and Materials, 2014, 488, 141.
7 Gao S J, Xiao S J, Hou G Q, et al. Applied Mechanics and Materials, 2013, 2279, 291.
8 He L X. Advanced Materials Research, 2014, 1052, 392.
9 You T C. Research on application technology of high titanium bearing bf slag concrete. Master’s Thesis, Wuhan University of Science and Technology, China, 2007 (in Chinese).
游天才. 高钛重矿渣混凝土应用技术研究. 硕士学位论文, 武汉科技大学, 2007.
10 Qian B, Hu J C, Qi M Q, et al. Journal of the Chinese Ceramic Society, 2018, 37(6), 2062 (in Chinese).
钱波, 胡建春, 戚明强, 等. 硅酸盐通报, 2018, 37(6), 2062.
11 Jiang H M. Research and application of high titanium heavy slag aggregate of high performance concrete. Master’s Thesis, Wuhan University of Technology, China, 2011 (in Chinese).
江海民. 高钛重矿渣集料制备高性能混凝土的研究与应用. 硕士学位论文, 武汉理工大学, 2011.
12 Li B, Chen J Y, Chen D. Sichuan Construction, 2003, 23(5), 82 (in Chinese).
李兵, 陈加耘, 陈栋. 四川建筑, 2003, 23(5), 82.
13 Ao J Q. Application of technology for grinding high titanium granulated blast furnace slag in high performance concrete. Master’s Thesis, Wuhan University of Science and Technology, China, 2002 (in Chinese).
敖进清. 高钛型高炉渣微粉特性及其在高性能混凝土中的应用. 硕士学位论文, 武汉科技大学, 2002.
14 Zhang J D. Study on high-titanium blast furnace slag powder and application in concrete. Master’s Thesis, Tongji University, China, 2004 (in Chinese).
张继东. 高钛高炉矿渣细粉及其在混凝土中的应用研究. 硕士学位论文, 同济大学, 2004.
15 Yang H M. Study on the performance of hydraulic concrete using high titanium slag as additive and aggregate. Master’s Thesis, Changjiang River Scientific Research Institute, China, 2010 (in Chinese).
杨华美. 高钛矿渣作为水工混凝土掺和料及骨料性能研究. 硕士学位论文, 长江科学院, 2010.
16 Sun J K, Chen W, Huang S H, et al. Advanced Materials Research, 2011, 1154(183-185), 1817.
17 Zhang T, Huang B. Materials, 2022, 15(3) 831.
18 Luo S J. The self thermal insulation performance study of high titanium heavey slag concrete. Master’s Thesis, Xihua University, China, 2012, (in Chinese).
罗述娟. 高钛重矿渣混凝土自保温性能研究. 硕士学位论文, 西华大学, 2012.
19 Jiang H M, Mou Y T, Ding Q J. Concrete, 2011(5), 125 (in Chinese).
江海民, 牟廷敏, 丁庆军. 混凝土, 2011(5), 125.
20 Mou T M, Kong D D, Cao P P, et al. Concrete, 2014(6), 101 (in Chinese).
牟廷敏, 孔德栋, 曹攀攀, 等. 混凝土, 2014(6), 101.
21 Ding Q J, Mou Y T, Liu X Q, et al. Construction Technology, 2015, 44(3), 57 (in Chinese).
丁庆军, 牟廷敏, 刘小清, 等. 施工技术, 2015, 44(3), 57.
22 Li X Y, Li J, Lu Z Y. Journal of Wuhan University of Technology, 2022, 44(10), 17 (in Chinese).
李晓英, 李军, 卢忠远. 武汉理工大学学报, 2022, 44(10), 17.
23 Li X Y. Study on properties and paste-aggregate interaction mechanism of high performance concrete with high titanium slag as aggregate. Ph.D. Thesis, Southwest University of Science and Technology, China, 2021 (in Chinese).
李晓英. 高钛矿渣高性能混凝土性能及其浆-骨界面作用机制研究. 博士学位论文, 西南科技大学, 2021.
24 Sun J K, Yi M L R, Jotikasthira N, et al. Advances in Civil Engineering, 2021, 2021, 1.
25 Sun J K, Chen W, Huang S H, et al. Advanced Materials Research, 2010, 168, 2013.
26 Li X W, Li X W, Yuan X. Applied Mechanics and Materials, 2012, 1801, 174.
27 Zhang Z M, Li D X. Key Engineering Materials, 2016, 680, 439.
28 Xiao F. Performance research of titanium slag concrete. Master’s Thesis, Chongqing University, China, 2004 (in Chinese).
肖斐. 钛渣混凝土性能的研究. 硕士学位论文, 重庆大学, 2004.
29 Li M Y, Zhang C, Liang R, et al. Journal of the Chinese Ceramic Society, 2023, 51(1), 270 (in Chinese).
李明阳, 张晨, 梁锐, 等. 硅酸盐学报, 2023, 51(1), 270.
30 Huo H Y, Liu G Q, Zou M, et al. Rare Metal Materials and Engineering, 2010, 39(S1), 124 (in Chinese).
霍红英, 刘国钦, 邹敏, 等. 稀有金属材料与工程, 2010, 39(S1), 134.
31 Luo K, Li J, Lu Z Y, et al. China Concrete and Cement Products, 2018(5), 58 (in Chinese).
罗凯, 李军, 卢忠远, 等. 混凝土与水泥制品, 2018(5), 58.
32 Li P, Qian B, Lou Y T. Science Technology and Engineering, 2017, 17(6), 259 (in Chinese).
李鹏, 钱波, 娄元涛. 科学技术与工程, 2017, 17(6), 259.
33 Xiao C. Research on using CFBC fly ash and high titanium slag to prepare ordinary wet-mixed mortar. Master’s Thesis, Southwest University of Science and Technology, China, 2015 (in Chinese).
肖超. 利用固硫灰和高钛矿渣制备普通湿拌砂浆的研究. 硕士学位论文, 西南科技大学, 2015.
34 Wang A G, Deng M, Sun D, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2012, 27(4), 758.
35 Luo T J, Wang D B, Chen Q C, et al. Multipurpose Utilization of Mineral Resources, 2019(5), 94 (in Chinese).
罗同俊, 王杜槟, 陈启超, 等. 矿产综合利用, 2019(5), 94.
36 He X L. The research and application of high titanium and heavy mineral residue concrete. Master’s Thesis, Chongqing University, China, 2006 (in Chinese).
何小龙. 全高钛矿渣混凝土的研究与应用. 硕士学位论文, 重庆大学, 2006.
37 Sun J K. Fundamental research on application of complex high titanium heavy slag. Master’s Thesis, Chongqing University, China, 2006 (in Chinese).
孙金坤. 全高钛重矿渣混凝土应用基础研究. 硕士学位论文, 重庆大学, 2006.
38 Yang H M, Shi Y, Yang H Q. Journal of Yangtze River Scientific Research Institute, 2010, 27(3), 54 (in Chinese).
杨华美, 石妍, 杨华全. 长江科学院院报, 2010, 27(3), 54.
39 Wang H B, Cheng X L, Cang D Q, et al. Journal of Building Materials, 2009, 12(4), 402 (in Chinese).
王怀斌, 程相利, 苍大强, 等. 建筑材料学报, 2009, 12(4), 402.
40 JGJ 52-2006. Stand for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete, China Building Industry Press, China, 2006(in Chinese).
JGJ 52-2006. 普通混凝土用砂、石质量及检验方法标准, 中国建筑工业出版社, 2006.
41 GB/T 14684-2022. Sand for construction, China Standard Press, China, 2022(in Chinese).
GB/T 14684-2022. 建设用砂, 中国标准出版社, 2022.
42 GB/T 14685-2022. Pebble and crushed stone for construction, China Standard Press, China, 2022(in Chinese).
GB/T 14685-2022. 建设用碎石卵石, 中国标准出版社, 2022.
43 GB 6566-2010. Limits of radionuclides in building materials, China Standard Press, China, 2010 (in Chinese).
GB 6566-2010. 建筑建材放射性核素限量, 中国标准出版社, 2010.
44 Chen J K. Preparation and properties of water quenched lightweight high strength concrete with high titanium slag. Master’s Thesis, Southwest University of Science and Technology, China, 2021 (in Chinese).
陈嘉琨. 水淬高钛矿渣轻质高强混凝土的制备及其性能研究. 硕士学位论文, 西南科技大学, 2021.
45 Liang H Z. Study on corrosion resistance of high titanium heavy slag concrete under multi-factor coupling. Master’s Thesis, Xihua University, China, 2021 (in Chinese).
梁贺之. 多因素耦合作用下高钛重矿渣混凝土的耐腐蚀性能研究. 硕士学位论文, 西华大学, 2021.
46 Zhou X, Li J L, Luo C L. Iron Steel Vanadium Titanium, 2001, 22(4), 43 (in Chinese).
周旭, 李江龙, 罗崇理. 钢铁钒钛, 2001, 22(4), 43.
47 Huo H Y, Li R P. Multipurpose Utilization of Mineral Resources, 2020, 1(4), 36 (in Chinese).
霍红英, 李瑞萍. 矿产综合利用, 2020, 1(4), 36.
48 Zhang X Y, Cai Y Q, Xu Y, et al. Environmental Engineering, 2016, 34(S1), 726 (in Chinese).
张馨予, 蔡艳青, 许莹, 等. 环境工程, 2016, 34(S1), 726.
49 Liu Z, Lai Z, Luo X, et al. Construction and Building Materials, 2022, 343, 128132.
50 Shi Y, Yang H M, Wang Y C, et al. New Building Materials, 2009, 36(9), 1 (in Chinese).
石妍, 杨华美, 王迎春, 等. 新型建筑材料, 2009, 36(9), 1.
51 He Z J. China Harbour Engineering, 2004(6), 4 (in Chinese).
何志军. 中国港湾建设, 2004(6), 4.
52 Wang H B, Fan F Z, Hao J Z, et al. Iron Steel Vanadium Titanium, 2004, 25(3), 48 (in Chinese).
王怀斌, 范付忠, 郝建璋, 等. 钢铁钒钛, 2004, 25(3), 48.
53 Fan Z, Lu Z Y, Li J, et al. China Concrete and Cement Products, 2015(2), 83 (in Chinese).
范志, 卢忠远, 李军, 等. 混凝土与水泥制品, 2015(2), 83.
54 Li X Y, Li J, Lu Z Y, et al. Construction and Building Materials, 2020, 234, 117342.
55 Chen J K, Li J, Lu Z Y, et al. Journal of Southwest University of Science and Technology, 2021, 36(2), 28 (in Chinese).
陈嘉琨, 李军, 卢忠远, 等. 西南科技大学学报, 2021, 36(2), 28.
56 Liao B, Wang Z Y, Xu Y, et al. Sichuan Building Science, 2014, 40(3), 204 (in Chinese).
廖彬, 王泽云, 徐咏, 等. 四川建筑科学研究, 2014, 40(3), 204.
57 Xu C S, Lou Y T, Deng M, et al. Concrete, 2015(1), 111 (in Chinese).
徐春生, 娄元涛, 邓敏, 等. 混凝土, 2015(1), 111.
58 Liang H Z, Chen W, Yang H, et al. Iron Steel Vanadium Titanium, 2022, 43(4), 100 (in Chinese).
梁贺之, 陈伟, 杨贺. 钢铁钒钛, 2022, 43(4), 100.
59 Huang S H, Chen W, Sun J K, et al. New Building Materials, 2006(11), 71 (in Chinese).
黄双华, 陈伟, 孙金坤, 等. 新型建筑材料, 2006(11), 71.
60 Sun J K, Liu J, Zhang Q, et al. Building Science, 2015, 31(11), 92 (in Chinese).
孙金坤, 刘静, 张茜, 等. 建筑科学, 2015, 31(11), 92.
61 Ding Q J, Deng C, Yang J, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2021, 36(5), 644.
62 Liang Y Q, Xu W L, Ding Q J, et al. Concrete, 2022, 392(6), 142 (in Chinese).
梁玉强, 徐文礼, 丁庆军, 等. 混凝土, 2022, 392(6), 142.
63 Jiang J, Wen J F, Xu J X, et al. New Building Materials, 2022, 49(6), 32 (in Chinese).
蒋俊, 文金凤, 胥嘉欣, 等. 新型建筑材料, 2022, 49(6), 32.
64 Ao J Q, Hao J Z, Wang H B, et al. Iron Steel Vanadium Titanium, 2007, 28(2), 57 (in Chinese).
敖进清, 郝建璋, 王怀斌, 等. 钢铁钒钛, 2007, 28(2), 57.
65 Hou X K, Wang D, Shi Y M, et al. Materials, 2020, 13(5), 1239.
66 Wang Y L, Yao Y H, Cui S P, et al. Materials Reports, 2018, 32(22), 3989 (in Chinese).
王亚丽, 姚羽涵, 崔素萍, 等. 材料导报, 2018, 32(22), 3989.
67 Pang S. Study on preparation and performance of super high strength concrete filled steel tubes with high titanium heavy slag sand. Master’s Thesis, Xihua University, China, 2021 (in Chinese).
庞帅. 高钛重矿渣砂超高强钢管混凝土制备及性能研究. 硕士学位论文, 西华大学, 2021.
68 Zhong S, Chen W, Wang W, et al. In:Proceedings of the 2015 4th International Conference on Sensors, Measurement and Intelligent Materials. China, 2016, pp.991.
69 Sun J K, Chen W, Huang S H, et al. Advanced Materials Research, 2011, 1154(183), 1817.
70 GB/T 50082-2009. Standard for test of long-term performance and durability of ordinary concrete, China Building Industry Press, China, 2009(in Chinese) .
GB/T 50082-2009. 普通混凝土长期性能和耐久性能试验方法标准, 中国建筑工业出版社, 2009.
71 Ding Q J, Zhang H, Hu J, et al. Concrete, 2020, 374(12), 1 (in Chinese).
丁庆军, 张恒, 胡俊, 等. 混凝土, 2020, 374(12), 1.
72 Chen C, Zhang H. China Concrete and Cement Products, 2023, 321(1), 74 (in Chinese).
陈超, 张恒. 混凝土与水泥制品, 2023, 321(1), 74.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed