Conversion of Viscoelastic Parameters of Asphalt Mixture Based on Continuous Time Spectrum
WANG Zhichen1,2, SUN Yazhen3,*, GUO Naisheng4
1 School of Computer Science and Engineering, Hunan University of Information Technology, Changsha 410151, China 2 Intelligent Engineering Technology Research Center, Harbin Cambridge University, Harbin 150069, China 3 School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China 4 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
Abstract: To enhance the accuracy of viscoelastic parameter conversions for asphalt mixtures while exploring the determination and conversion methods of continuous time spectra for these materials, an explicit calculation formula for continuous time spectra was derived using an improved Sigmoidal function. Additionally, a viscoelastic parameter conversion process for asphalt mixtures was proposed based on this approach, enabling frequency-domain viscoelastic parameters to be converted to time-domain viscoelastic parameters. To validate the accuracy of these conversions, complex modulus and creep compliance tests were conducted on Mix-9.5, Mix-19, and Mix-25 asphalt mixtures. Results indicate that the generation of non-performing spectra can be effectively mitigated through the use of the improved Sigmoidal function when calculating the continuous time spectra of asphalt mixtures. Furthermore, when taking a time point interval N=1, creep compliance converted based on continuous time spectra is closer to the experimental value than that converted based on discrete time spectra. Notably, the curves of relaxation and creep compliance parameters converted align with the characteristics of the viscoelastic parameter curves of asphalt mixtures, resulting in strong consistency regarding the conversion process.
王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
WANG Zhichen, SUN Yazhen, GUO Naisheng. Conversion of Viscoelastic Parameters of Asphalt Mixture Based on Continuous Time Spectrum. Materials Reports, 2024, 38(18): 22120218-6.
1 Park S W, Schapery R A. International Journal of Solids & Structures, 1999, 36(11), 1653. 2 Wang Z C, Guo N S, Zhao Y H, et al. Engineering Mechanics, 2017, 34(2), 242 (in Chinese). 王志臣, 郭乃胜, 赵颖华, 等. 工程力学, 2017, 34(2), 242. 3 Liu H Q, Zeiada W, Al-Khateeb G G, et al. Materials and Structures, 2020, 53, 1. 4 Wang Z C, Guo N S, Zhao Y H, et al. Journal of Beijing University of Technology, 2019, 45(2), 168 (in Chinese). 王志臣, 郭乃胜, 赵颖华, 等. 北京工业大学学报, 2019, 45(2), 168. 5 Park S W, Kim Y R. Journal of Materials in Civil Engineering, 2001, 13(1), 26. 6 Zhan X L, Zhang X N, Lu L, et al. Journal of Highway and Transportation Research and Development, 2007, 24(12), 38 (in Chinese). 詹小丽, 张肖宁, 卢亮, 等. 公路交通科技, 2007, 24(12), 38. 7 Chen J Y, Sun Y R, Xu H, et al. Journal of Harbin Institute University of Technology, 2014, 46(2), 104 (in Chinese). 陈静云, 孙依人, 徐辉, 等. 哈尔滨工业大学学报, 2014, 46 (2), 104. 8 Lyu H J, Liu H Q, Luo R, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(3), 493 (in Chinese). 吕慧杰, 刘涵奇, 罗蓉, 等. 武汉理工大学学报(交通科学与工程版), 2017, 41(3), 493. 9 Luo R, Lv H J, Tan Y Q, et al. Construction and Building Materials, 2018, 168, 758. 10 Mun S, Zi G. Mechanics of Time-Dependent Materials, 2010, 14(2), 191. 11 Bhattacharjee S, Swamy A K, Daniel J S. Mechanics of Time-Dependent Materials, 2012, 16(3), 287. 12 Zhao Y Q, Wu J, Wen J. Highway, 2006, 51(8), 163 (in Chinese). 赵延庆, 吴剑, 文健. 公路, 2006, 51(8), 163. 13 Wang Z C, Guo N S, Jin X, et al. Materials Reports, 2022, 36(22), 241 (in Chinese). 王志臣, 郭乃胜, 金鑫, 等. 材料导报, 2022, 36(22), 241. 14 Rowe G M, Hakimzadeh S, Blankenship P, et al. Transportation Research Record, 2009, 2127, 164. 15 Nobutai. Journal of Mathematics (China), 1965(6), 46 (in Chinese). 服部泰. 数学通报, 1965(6), 46. 16 Tschoegl N W. The phenomenological theory of linear viscoelastic behavior:an introduction, Springer-Verlag, New York, 1989, pp.116.