Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 22120218-6    https://doi.org/10.11896/cldb.22120218
  无机非金属及其复合材料 |
基于连续时间谱的沥青混合料黏弹性参数换算
王志臣1,2, 孙雅珍3,*, 郭乃胜4
1 湖南信息学院计算机科学与工程学院,长沙 410151
2 哈尔滨剑桥学院智能工程技术研究中心,哈尔滨 150069
3 沈阳建筑大学交通与测绘工程学院,沈阳 110168
4 大连海事大学交通运输工程学院,辽宁 大连 116026
Conversion of Viscoelastic Parameters of Asphalt Mixture Based on Continuous Time Spectrum
WANG Zhichen1,2, SUN Yazhen3,*, GUO Naisheng4
1 School of Computer Science and Engineering, Hunan University of Information Technology, Changsha 410151, China
2 Intelligent Engineering Technology Research Center, Harbin Cambridge University, Harbin 150069, China
3 School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
4 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
下载:  全 文 ( PDF ) ( 3621KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提升沥青混合料黏弹性参数的换算精度,探究沥青混合料连续时间谱的确定与换算方法,利用改进Sigmoidal函数得到了连续时间谱的显式计算公式,提出了基于连续时间谱的沥青混合料黏弹性参数换算流程,实现了由频域黏弹性参数向时域黏弹性参数的换算,采用Mix-9.5、Mix-19、Mix-25沥青混合料的复数模量和蠕变柔量试验对黏弹性参数的换算精度进行验证。结果表明,利用改进Sigmoidal函数计算得到的沥青混合料连续时间谱能够有效避免不良谱线产生,取时间点间距N=1时,基于连续时间谱换算得到的蠕变柔量较离散时间谱更接近于试验值,换算得到的松弛系和蠕变系参数曲线符合沥青混合料的黏弹性参数曲线特征,具有较好的换算一致性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志臣
孙雅珍
郭乃胜
关键词:  道路工程  沥青混合料  连续时间谱  黏弹性  主曲线    
Abstract: To enhance the accuracy of viscoelastic parameter conversions for asphalt mixtures while exploring the determination and conversion methods of continuous time spectra for these materials, an explicit calculation formula for continuous time spectra was derived using an improved Sigmoidal function. Additionally, a viscoelastic parameter conversion process for asphalt mixtures was proposed based on this approach, enabling frequency-domain viscoelastic parameters to be converted to time-domain viscoelastic parameters. To validate the accuracy of these conversions, complex modulus and creep compliance tests were conducted on Mix-9.5, Mix-19, and Mix-25 asphalt mixtures. Results indicate that the generation of non-performing spectra can be effectively mitigated through the use of the improved Sigmoidal function when calculating the continuous time spectra of asphalt mixtures. Furthermore, when taking a time point interval N=1, creep compliance converted based on continuous time spectra is closer to the experimental value than that converted based on discrete time spectra. Notably, the curves of relaxation and creep compliance parameters converted align with the characteristics of the viscoelastic parameter curves of asphalt mixtures, resulting in strong consistency regarding the conversion process.
Key words:  road engineering    asphalt mixture    continuous time spectrum    viscoelastic    master curve
发布日期:  2024-10-12
ZTFLH:  U414  
基金资助: 黑龙江省自然科学基金资助项目(YQ2022E038);国家自然科学基金(52278454);辽宁省教育厅项目(LJKZZ20220080;LJKM20220934)
通讯作者:  *王志臣,博士,博士后,硕士研究生导师。2018年毕业于长安大学,获得道路材料科学与工程专业博士学位,主要从事道路材料微观结构及力学行为、严寒地区筑路材料及性能研究等,近年来在国内外重要期刊发表研究论文20余篇。 孙雅珍,通信作者,博士,沈阳建筑大学交通与测绘工程学院教授、博士研究生导师。2009年毕业于东北大学,获得工程力学专业博士学位。主要从事道路工程、工程力学、隧道工程和地下工程等领域的研究,在国内外公开发表核心及以上论文100余篇,其中三大检索收录40余篇,SCI收录12篇,且研究论文多次被引用;出版专著2部,授权专利6项。syz16888@126.com   
作者简介:  王志臣,博士,博士后,硕士研究生导师。2018年毕业于长安大学,获得道路材料科学与工程专业博士学位,主要从事道路材料微观结构及力学行为、严寒地区筑路材料及性能研究等,近年来在国内外重要期刊发表研究论文20余篇。
引用本文:    
王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
WANG Zhichen, SUN Yazhen, GUO Naisheng. Conversion of Viscoelastic Parameters of Asphalt Mixture Based on Continuous Time Spectrum. Materials Reports, 2024, 38(18): 22120218-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120218  或          http://www.mater-rep.com/CN/Y2024/V38/I18/22120218
1 Park S W, Schapery R A. International Journal of Solids & Structures, 1999, 36(11), 1653.
2 Wang Z C, Guo N S, Zhao Y H, et al. Engineering Mechanics, 2017, 34(2), 242 (in Chinese).
王志臣, 郭乃胜, 赵颖华, 等. 工程力学, 2017, 34(2), 242.
3 Liu H Q, Zeiada W, Al-Khateeb G G, et al. Materials and Structures, 2020, 53, 1.
4 Wang Z C, Guo N S, Zhao Y H, et al. Journal of Beijing University of Technology, 2019, 45(2), 168 (in Chinese).
王志臣, 郭乃胜, 赵颖华, 等. 北京工业大学学报, 2019, 45(2), 168.
5 Park S W, Kim Y R. Journal of Materials in Civil Engineering, 2001, 13(1), 26.
6 Zhan X L, Zhang X N, Lu L, et al. Journal of Highway and Transportation Research and Development, 2007, 24(12), 38 (in Chinese).
詹小丽, 张肖宁, 卢亮, 等. 公路交通科技, 2007, 24(12), 38.
7 Chen J Y, Sun Y R, Xu H, et al. Journal of Harbin Institute University of Technology, 2014, 46(2), 104 (in Chinese).
陈静云, 孙依人, 徐辉, 等. 哈尔滨工业大学学报, 2014, 46 (2), 104.
8 Lyu H J, Liu H Q, Luo R, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(3), 493 (in Chinese).
吕慧杰, 刘涵奇, 罗蓉, 等. 武汉理工大学学报(交通科学与工程版), 2017, 41(3), 493.
9 Luo R, Lv H J, Tan Y Q, et al. Construction and Building Materials, 2018, 168, 758.
10 Mun S, Zi G. Mechanics of Time-Dependent Materials, 2010, 14(2), 191.
11 Bhattacharjee S, Swamy A K, Daniel J S. Mechanics of Time-Dependent Materials, 2012, 16(3), 287.
12 Zhao Y Q, Wu J, Wen J. Highway, 2006, 51(8), 163 (in Chinese).
赵延庆, 吴剑, 文健. 公路, 2006, 51(8), 163.
13 Wang Z C, Guo N S, Jin X, et al. Materials Reports, 2022, 36(22), 241 (in Chinese).
王志臣, 郭乃胜, 金鑫, 等. 材料导报, 2022, 36(22), 241.
14 Rowe G M, Hakimzadeh S, Blankenship P, et al. Transportation Research Record, 2009, 2127, 164.
15 Nobutai. Journal of Mathematics (China), 1965(6), 46 (in Chinese).
服部泰. 数学通报, 1965(6), 46.
16 Tschoegl N W. The phenomenological theory of linear viscoelastic behavior:an introduction, Springer-Verlag, New York, 1989, pp.116.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[6] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[7] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[8] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[9] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-.
[10] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[11] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[12] 罗婷, 王嘉昕, 谢斌, 艾长发, 颜川奇. 不同温拌剂对高黏沥青老化性能的影响[J]. 材料导报, 2024, 38(13): 22120076-9.
[13] 龚芳媛, 拜佳威, 陈祎, 程雪佼, 王书岳, 邓锐. 沥青混合料中集料迁移的表征方法与评价指标综述[J]. 材料导报, 2024, 38(11): 22100126-14.
[14] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[15] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed