Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21110074-8    https://doi.org/10.11896/cldb.21110074
  无机非金属及其复合材料 |
微波加热集料的传热特性及其影响因素
张庆宇1,2, 罗京3, 赵毅2,3,*, 刘英3, 张新永4
1 重庆交通大学土木工程学院,重庆 400074
2 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
3 重庆交通大学材料科学与工程学院,重庆 400074
4 河北迁曹高速公路开发有限公司,河北 唐山 063200
Heat Transfer Characteristics and Its Influencing Factors of Aggregate Heated by Microwave
ZHANG Qingyu1,2, LUO Jing3, ZHAO Yi2,3,*, LIU Ying3, ZHANG Xinyong4
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 National & Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
3 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
4 Hebei Qiancao Expressway Development Co., Ltd., Tangshan 063200, Hebei, China
下载:  全 文 ( PDF ) ( 8809KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 集料是微波加热沥青混合料自愈合的重要介质材料。本工作通过矢量网络分析试验、工业箱式微波炉微波加热试验及XRD、XRF分析,研究了石灰岩、玄武岩和钢渣三种集料的电磁参数、微波加热过程的加热响应以及集料粒径、钢渣掺量、化学成分和物相组成对集料传热性能的影响,并分析了集料与沥青混合料微波加热传热性能的关联性。结果表明,钢渣的电磁参数明显高于石灰岩和玄武岩,表明其电磁波吸收效果较好。相比石灰岩和玄武岩,钢渣因三氧化二铁含量较高,其微波加热传热性能更好。粒径、钢渣掺量和水分是影响集料微波加热传热性能的主要因素。随着粒径和钢渣掺量的增大,集料的传热性能呈增大趋势。相比干燥集料,含水率为0.3%~1.0%的集料微波加热升温速率均有所下降,降低幅度介于40%~50%。构建了不同含水率、钢渣掺量的集料微波加热表面温度与加热时间的线性关系方程,相关性系数R2均大于0.90,拟合效果良好。XRD和XRF分析表明,相比石灰岩和玄武岩,钢渣的活性金属化合物含量最高,微波加热的敏感性较好。微波加热试验表明,微波吸收能力由大到小依次为钢渣、钢渣沥青混合料、普通沥青混合料。钢渣微波加热传热性能优于钢渣沥青混合料和普通沥青混合料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张庆宇
罗京
赵毅
刘英
张新永
关键词:  道路工程  集料  钢渣  微波加热  传热性能    
Abstract: Aggregate is an important dielectric material for self-healing of asphalt mixture heated by microwave. The electromagnetic parameters of limestone, basalt and steel slag aggregates, the heating response of aggregates during microwave heating process and the effects of aggregate particle size, steel slag content, chemical composition and phase composition on the heat transfer performance of aggregates were studied by vector network analysis test, industrial box microwave oven microwave heating test, XRD and XRF analysis, and the correlation between aggregate and asphalt mixture microwave heating heat transfer performance was analyzed.The results show that the electromagnetic parameters of steel slag are significantly higher than those of limestone and basalt, indicating that its electromagnetic wave absorption effect is better. Compared with limestone and basalt, steel slag has better microwave heating heat transfer performance because of its high content of ferric oxide. Particle size, steel slag content and water content are the main factors affecting the heat transfer performance of aggregate by microwave heating.With the increase of particle size and steel slag content, the heat transfer performance of aggregate increases. Compared with dry aggregates, the microwave heating rate of aggregates with water content of 0.3%—1.0% decreased by 40%—50%. The linear relationship equation between surface temperature of aggregates with different water content and steel slag content and heating time under microwave heating has been constructed. The correlation coefficients are all greater than 0.90, and the fitting effect is good.XRD and XRF analysis show that compared with limestone and basalt, steel slag has the highest content of active metal compounds and better sensitivity to microwave heating. The microwave heating test shows that the decreasing order of microwave absorption capacity is steel slag, steel slag asphalt mixture and ordinary asphalt mixture. The heat transfer performance of steel slag heated by microwave is better than that of steel slag asphalt mixture and ordinary asphalt mixture.
Key words:  road engineering    aggregate    steel slag    microwave heating    heating performance
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  U416.217  
基金资助: 河北省交通运输厅科技项目(QC2018-3);重庆交通大学交通土建工程材料国家地方联合工程实验室开放基金项目(LHSYS-2021-002);重庆市研究生联合培养基地建设项目(JDLHPYJD2021011)
通讯作者:  *赵毅,重庆交通大学材料科学与工程学院教授、博士、博士后、硕士研究生导师。2017年6月在重庆交通大学交通运输工程专业取得博士学位。主要从事功能性路面材料研发与应用技术研究。在路面材料领域发表SCI/EI论文10余篇,包括Construction and Building Materials、Progress in Organic Coatings、《建筑材料学报》《哈尔滨工业大学学报》《长安大学学报(自然科学版)》等。1585513635@qq.com   
作者简介:  张庆宇,重庆交通大学硕士研究生导师。2006年12月在上海交通大学建筑与土木工程专业取得硕士学位,2019年9月至今在重庆交通大学交通运输工程专业攻读博士学位,在何兆益教授的指导下进行研究。主要从事沥青混凝土路面材料研发与工程应用技术研究。在路面材料领域发表SCI/EI/中文核心论文10余篇,获授权发明专利2项。
引用本文:    
张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
ZHANG Qingyu, LUO Jing, ZHAO Yi, LIU Ying, ZHANG Xinyong. Heat Transfer Characteristics and Its Influencing Factors of Aggregate Heated by Microwave. Materials Reports, 2023, 37(8): 21110074-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110074  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21110074
1 Chen A Q, Zhao Y L, Li P B,et al. Construction and Building Materials, 2020,231, 117157.
2 Liang B, Lan F, Shi K, et al. Construction and Building Materials, 2021, 266,120453.
3 Liu Q, Yu W, Wu S, et al. Construction and Building Materials, 2017, 144,663.
4 Trigos L, Gallego J, Escavy J I. Construction and Building Materials, 2020, 230,117035.
5 Garcia A,Salih S, Gómez-Meijide B. Construction and Building Mate-rials, 2020, 238,117627.
6 Phan T M, Park D W, Le T H M. Construction and Building Materials, 2018, 180,503.
7 Ji Xiaoping, Yang Ziguang, Zhou Zehong, et al. China Journal of Highway and Transport,2018,31(11),51 (in Chinese).
纪小平,杨自广,周泽洪,等. 中国公路学报,2018,31(11),51.
8 Li R, Chen J, Zhou T, et al. Construction and Building Materials, 2016, 105,336.
9 Gulisano F, Gallego J. Construction and Building Materials, 2021, 278,121993.
10 Ye Hongyu, Wang Xuancang, Fang Naren, et al. Engineering Journal of Wuhan University,2019,52(11),981.
11 Liu Xiaoming, Zhao Yu, Wei Ziqi, et al. Journal of Central South University (Science and Technology),2021,52(7),2321(in Chinese).
刘小明,赵昱, 魏子奇, 等. 中南大学学报(自然科学版), 2021,52(7),2321.
12 González A, Norambuena-Contreras J, Storey L, et al. Construction and Building Materials, 2017, 159,164.
13 Li C, Wu S, Chen Z, et al. Construction and Building Materials, 2018, 189,757.
14 Zhang K, Gao X, Zhang Q, et al. Journal of Alloys and Compounds, 2017, 723,912.
15 Gao J, Sha A, Wang Z, et al. Journal of Cleaner Production, 2017, 152,429.
16 Lou B, Sha A, Barbieri D M, et al. Materials and Structures, 2021, 54(1),1.
17 Gao J, Zhang Z W, Han Z Q, et al. Materials Reports A:Review Papers, 2016, 30(12),87(in Chinese).
高杰, 张正伟, 韩振强, 等. 材料导报:综述篇, 2016, 30(12),87.
18 Wang Y, Liu Z, Hao P. Construction and Building Materials, 2019, 202,692.
19 Wang Z, Dai Q, Guo S. Construction and Building Materials, 2018, 187,865.
20 Liu X, Zhao Y, Wei Z, et al. Construction and Building Materials,2020, 254,119209.
21 Zhao H, Sheng Z, Zhu X, et al. Journal of Materials in Civil Enginee-ring, 2017, 29(6),04017007.
22 Benedetto A, Calvi A. Construction and Building Materials, 2013, 44,351.
23 Zhou C G, Ai L Q, Lyu Y, et al. Journal of North China University of Science and Technology(Natural Science Edition), 2011,33(3),25(in Chinese).
周朝刚,艾立群,吕岩, 等. 河北理工大学学报(自然科学版),2011,33(3),25.
24 Zhu H Z, Liu Y F, Yuan H, et al. Journal of Hefei University of Techno-logy (Natural Science), 2020, 43(3),376.(in Chinese)
朱洪洲, 刘玉峰, 袁海,等. 合肥工业大学学报(自然科学版), 2020, 43(3),376.
25 Álvaro García. Fuel, 2012, 93(1),264.
26 Zhu X, Cai Y, Zhong S, et al. Construction and Building Materials, 2017, 141,12.
27 Liu W. Study on enhancement mechanism and healing evaluation of microwave absorption of asphalt mixture. Ph.D. Thesis, Southeast University, 2018 (in Chinese).
刘为.沥青混合料微波吸收增强机理与修复研究.博士学位论文, 东南大学, 2018.
28 Wang Z, He J, Wang Z Y, et al. Journal of Building Materials, 2021,24(1),106 (in Chinese).
王智, 何坚, 王子仪, 等. 建筑材料学报, 2021,24(1),106.
29 Gao J, Sha A, Wang Z, et al. Journal of Cleaner Production, 2017, 152,429.
30 Gao Z Y, Zhang Y F, Fu B B, et al. Road Machinery & Construction Mechanization, 2020,37(5),78 (in Chinese).
高子渝,张翼飞,付贝贝, 等. 筑路机械与施工机械化, 2020,37(5),78.
31 Xia D K, Pickles C A. Cim Bulletin, 1997, 90(1011),96.
32 Tong G X, Yuan J H, Hua Q,et al. Journal of Functional Materials, 2011,42(S2),287 (in Chinese).
童国秀,袁进好,华桥, 等. 功能材料, 2011,42(S2),287.
[1] 李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
[2] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[3] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[4] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[5] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[6] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[7] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[8] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[9] 霍泳霖, 霍冀川, 张行泉, 秦桂璐. 玄武岩的开发利用进展[J]. 材料导报, 2022, 36(6): 20080281-11.
[10] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[11] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[12] 胡恒武, 查旭东, 吕瑞东, 邱梦萱, 钟海阔, 李正, 潘勤学. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 21060129-12.
[13] 王凤, 肖月, 崔培德, 磨炼同, 方明镜. 集料形态特征对沥青混合料性能影响规律的研究进展[J]. 材料导报, 2022, 36(17): 21030063-13.
[14] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[15] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed