Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 22040240-6    https://doi.org/10.11896/cldb.22040240
  无机非金属及其复合材料 |
矿冶固废基胶结充填料的制备及性能研究
李小占1, 张鸿泽2, 张苏花3,4, 李鑫4, 王长龙4,*, 陈敬亮4, 翟玉新5, 荊牮霖4, 马锦涛4, 平浩岩4, 郑永超6
1 北京科技大学高效轧制与智能制造国家工程研究中心,北京 100083
2 中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
3 邯郸市建业建设工程质量检测有限公司,河北 邯郸 056000
4 河北工程大学土木工程学院,河北 邯郸 056038
5 中铁建设集团有限公司技术中心,北京 100040
6 北京建筑材料科学研究总院有限公司固废资源化利用与节能建材国家重点实验室,北京 100041
Preparation and Properties of Cemented Paste Backfill Material Containing Mining and Metallurgical Solid Waste
LI Xiaozhan1, ZHANG Hongze2, ZHANG Suhua3,4, LI Xin4, WANG Changlong4,*, CHEN Jingliang4, ZHAI Yuxin5, JING Jianlin4, MA Jintao4, PING Haoyan4, ZHENG Yongchao6
1 National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing, Beijing 100083, China
2 School of Earth Science and Surveying and Mapping, China University of Mining and Technology (Beijing), Beijing 100083, China
3 Handan Jianye Construction Engineering Quality Inspection Co., Ltd., Handan 056000, Hebei, China
4 School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
5 Technical Center, China Railway Construction Group Co., Ltd., Beijing 100040, China
6 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
下载:  全 文 ( PDF ) ( 5006KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钢渣、钒钛矿渣为主要原料制备胶结剂,再将其与钒钛铁尾矿制成矿井充填料,通过力学性能、XRD、SEM、FTIR等测试,研究了胶结充填料的性能及胶结剂水化产物的组成和结构。结果表明:当钢渣、钒钛矿渣的质量比为13∶12,胶结剂中钢渣/钒钛矿渣、磷石膏、双氰胺废渣、复合磷酸、水泥熟料的质量比为84∶3.6∶5.4∶ 4.2∶ 2.8,充填料胶砂比为1∶4,料浆浓度为80%,减水剂含量为0.178%时,充填料坍落度为214 mm,充填料28 d抗折和抗压强度分别达到4.04 MPa、8.31 MPa,满足GB/T 39489-2020《全尾砂膏体充填技术规范》要求。XRD和SEM分析表明,胶结剂水化产物主要为钙矾石(AFt),磷石膏的存在促进了AFt的形成,而AFt又进一步促进了钒钛矿渣和钢渣中[AlO4]5-和[SiO4]4-沿桥氧的断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李小占
张鸿泽
张苏花
李鑫
王长龙
陈敬亮
翟玉新
荊牮霖
马锦涛
平浩岩
郑永超
关键词:  钢渣  钒钛矿渣  胶结剂  充填料  钙矾石    
Abstract: Steel slag and vanadium-titanium slag were used as the main raw materials to prepare cementing agent, and then mine cemented paste backfill material was prepared by cementing agent and vanadium-titanium iron ore tailings. The properties of cemented paste backfill material, and the composition and structure of hydration products in the cementing agent were investigated by means of mechanical properties, X-ray diffraction (XRD), scanning electronic microscopy (SEM), fourier transform-infrared spectroscopy (FTIR). The results showed that when the mass percentage of steel slag and vanadium-titanium slag was 13∶12, and the mass ratio of steel slag/vanadium titanium slag, phosphogypsum, dicyandiamide waste slag, composite phosphoric acid, and cement clinker in the cementing agent was 84∶3.6∶5.4∶4.2∶2.8, the binder to sand ratio of cemented paste backfill material was 1∶4, the slurry concentration was 80%, and the dosage of water reducing agent was 0.178%, the slump was 214 mm, and the 28-day flexural strength and 28-day compressive strength of cemented paste backfill material reached 4.04 MPa and 8.31 MPa respectively, which meet the requirements of GB/T 39489-2020 Technical Specification for the Total Tailing Paste backfill. XRD and SEM analysis show that the hydration product in the cementing agent is mainly ettringite (AFt). The existence of phosphogypsum promotes the formation of AFt, and AFt further promotes the fracture of [AlO4]5- and [SiO4]4- along the bridge oxygen in vanadium-titanium slag and steel.
Key words:  steel slag    vanadium-titanium slag    cementing agent    cemented paste backfill material    ettringite
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TU522.3  
基金资助: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007);中铁建设集团有限公司科技研发计划(22-14b;22-11b);邯郸市科学技术研究与发展计划项目(21422111260)
通讯作者:  *王长龙,河北工程大学教授、博士研究生导师。2002年获学士学位,2007年获硕士学位,2014年获博士学位。长期从事新型建筑材料、矿物材料及复杂共生矿产资源综合利用研究。在国内外重要期刊发表文章80多篇,授权发明专利12项,出版专著4部。baistuwong@139.com   
作者简介:  李小占,硕士,北京科技大学高效轧制与智能制造国家工程研究中心助理研究员。2001年获学士学位,2010年获硕士学位。从事环境科学及固废资源化研究。在国内外重要期刊发表文章20多篇,申报发明专利10余项。
引用本文:    
李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
LI Xiaozhan, ZHANG Hongze, ZHANG Suhua, LI Xin, WANG Changlong, CHEN Jingliang, ZHAI Yuxin, JING Jianlin, MA Jintao, PING Haoyan, ZHENG Yongchao. Preparation and Properties of Cemented Paste Backfill Material Containing Mining and Metallurgical Solid Waste. Materials Reports, 2023, 37(8): 22040240-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040240  或          http://www.mater-rep.com/CN/Y2023/V37/I8/22040240
1 Wang C L, Zhang K F, Zuo W, et al. Materials Reports B:Research Papers, 2020, 34(12), 24034 (in Chinese).
王长龙, 张凯帆, 左伟, 等.材料导报:研究篇,2020, 34(12), 24034.
2 Ghirian A, Fall M. International Journal of Mining Science and Technology, 2016, 26(5), 809.
3 Deng D Q, Liu L, Yao Z L, et al. Journal of Environmental Management, 2017, 196, 100.
4 Su L, Zhang X H. Mining and Metallurgical Engineering, 2013, 33(3), 117.
5 Yilmaz E, Belem T, Benzaazoua M. Engineering Geolegy, 2014, 168, 23.
6 Li W C, Fall M. Construction and Building Materials, 2016, 106, 297.
7 Yilmaz E, Belem T, Bussière B, et al. Construction and Building Ma-terials, 2015, 75, 99.
8 Yilmaz T, Ercikdi B, Karaman K,et al. Ultrasonics, 2014, 54(5), 1386.
9 Ke X, Hou H B, Zhou M, et al. Construction and Building Materials, 2015, 96, 378.
10 Li W, Zhou X, Liao M Q, et al. Minning Technology, 2011, 11(3), 19.
11 Peyronnard O, Benzaazoua M. Minerials Engineering, 2012, 29, 28.
12 Zhang J W, He W D, Ni W, et al. Chemical Engineering Transactions, 2016, 51, 1039.
13 Cihangir F, Akyol Y. International Journal of Mining, Reclamation and Environment, 2018, 32(2), 123.
14 Li Y C, Min X B, Ke Y, et al. Journal of Hazardous Materials, 2018, 34, 343.
15 Zhang Q L, Ji T, Yang Z X, et al. Construction and Building Materials, 2020, 235, 117449.
16 Wu Q S, Wu Y, Tong W H, et al. Construction and Building Materials, 2018, 193, 426.
17 Jiang L H, Li C Z, Wang C, et al. Journal of Cleaner Production, 2018, 205, 589.
18 Ashrit S, Chatti R V, Udpa K N, et al. MOJ Mining and Metallurgy, 2017, 1(1), 1.
19 Zhao J H, Wang D M, Yan P Y, et al. Construction and Building Mate-rials, 2016, 113, 835.
20 Duan S Y, Liao H Q, Cheng F Q, et al. Construction and Building Materials, 2018, 187, 1113.
21 Cho B, Choi H. Construction and Building Materials, 2016, 123, 436.
22 Zhang G Q, Wu P C, Gao S J, et al. Acta Microscopica, 2019, 28(4), 770.
23 Zhang G Q, Wu P C, Gao S J, et al. Acta Microscopica, 2019, 28(5), 961.
24 Mason B. Journal of Iron and Steel Institute, 1994, 11, 69.
25 Huo B B, Li B L, Chen C, et al. Construction and Building Materials, 2021, 307, 125004.
26 Wang F, Zheng Q Q, Zhang G Q, et al. Journal of New Materials for Electrochemical Systems, 2020, 23(1), 52.
27 Wang C L, Ren Z Z, Huo Z K, et al. Alexandria Engineering Journal, 2021, 60(6), 4961.
28 Fisher L V, Barron A R. Resources, Conservation and Recycling, 2019, 146, 244.
29 Huo B B, Li B L, Huang S Y, et al. Construction and Building Mate-rials, 2020, 254, 119319.
30 Huo B B, Li B L, Chen C, et al. Journal of the Chinese Ceramic Society, 2021, 49(5), 948 (in Chinese).
霍彬彬, 李保亮, 陈春, 等.硅酸盐学报, 2021, 49(5), 948.
31 Bensted J, Barnes P. Structure and performance of cements, second ed., Spon Press, US, 2002, pp. 201.
32 Wang C L, Ni W, Zhang S Q, et al. Construction and Building Mate-rials, 2016, 104, 109.
33 Wang S, Wang C L, Wang Q H, et al. Polish Journal of Environmental Studies, 2018, 27(1), 357.
34 Li N, Farzadnia N, Shi C J. Cement and Concrete Research, 2017, 100, 214.
35 Wu M, Zhang Y S, Jia Y T, et al. Journal of Cleaner Production, 2019, 220, 677.
36 Cui X W, Ni W, Ren C. Chinese Journal of Materials Research, 2017, 31(9), 687 (in Chinese).
崔孝炜, 倪文, 任超.材料研究学报, 2017, 31(9), 687.
37 Li Y, Qiao C Y, Ni W. Journal of Cleaner Production, 2020, 269, 122212.
38 Gao S J, Ni W, Zhu L P, et al. Journal of Central South University (Science and Technology), 2013, 44(6), 2259 (in Chinese).
高术杰, 倪文, 祝丽萍, 等.中南大学学报(自然科学版), 2013, 44(6), 2259.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[3] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[4] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[5] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[6] 沈燕, 朱航宇, 王培芳, 陈玺, 钱觉时. 不同养护条件下硫硅酸钙-硫铝酸钙水泥的性能研究[J]. 材料导报, 2022, 36(12): 21040035-6.
[7] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[8] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[9] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[10] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[11] 赵立杰, 张芳. 钢渣资源综合利用及发展前景展望[J]. 材料导报, 2020, 34(Z2): 319-322.
[12] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[13] 杜惠惠, 倪文, 高广军. 水淬高钛高炉渣制备C40全固废混凝土试验研究[J]. 材料导报, 2020, 34(24): 24055-24060.
[14] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[15] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed