Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24055-24060    https://doi.org/10.11896/cldb.19120047
  无机非金属及其复合材料 |
水淬高钛高炉渣制备C40全固废混凝土试验研究
杜惠惠1,2, 倪文1,2, 高广军1,2
1 北京科技大学土木与资源工程学院,北京100083
2 北京科技大学工业典型污染物资源化处理北京重点实验室,北京100083
Experimental Study on Preparation of C40 Concrete with Industrial Solid Wastes from High-titanium Blast Furnace Slag
DU Huihui1,2, NI Wen1,2, GAO Guangjun1,2
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 4156KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高低活性水淬高钛高炉渣的综合利用率,采用多固废协同激发的技术路线制备胶凝材料,通过正交试验确定了水淬高钛高炉渣-钢渣-石膏基胶凝材料的优化配比,并以原状水淬高钛高炉渣颗粒为骨料制备全固废混凝土。研究结果表明,胶凝材料的优化配方为:水淬高钛高炉渣和钢渣质量比为2∶1、脱硫石膏掺量为16%、减水剂掺量为0.28%、水胶比为0.24。当胶砂比为1∶1时,在标准养护条件下,全固废混凝土试块28 d抗压强度可以达到40 MPa以上,符合C40混凝土强度要求。XRD、TG-DTA和SEM-EDS分析表明,在脱硫石膏的激发下,水淬高钛高炉渣与钢渣相互促进,协同水化,水化产物以针棒状的钙矾石(AFt)和无定形的C-S-H凝胶为主。随水化龄期延长,水化产物不断增多,钙矾石晶型趋于稳定,网状C-S-H凝胶与钙矾石穿插形成的致密结构有利于混凝土强度的增长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜惠惠
倪文
高广军
关键词:  水淬高钛高炉渣  全固废混凝土  钙矾石(AFt)  水化硅酸钙凝胶(C-S-H凝胶)    
Abstract: In order to enhance the rate of comprehensive utilization of low activity water-quenched high-titanium blast furnace slag, the cementitious materials were prepared by the technical route of multi-solid waste synergistic excitation. The optimized ratio of water-quenched high-titanium blast furnace slag-steel slag-gypsum-based cementitious materials was determined by orthogonal test. All solid waste concretes were prepared by using undisturbed water-quenched high-titanium furnace slag as aggregate. The results show that the optimal ratio of cementing materials is: the mass ratio of high-titanium blast furnace slag and steel slag is 2∶1, desulfurization gypsum content is 16%, superplasticizer content is 0.28%, water cement ratio is 0.24. When the rubber sand ratio is 1∶1, the 28 d compressive strength of all solid waste concrete test blocks can reach more than 40 MPa under standard curing conditions, meeting the requirements of C40 concrete strength. The results of XRD, TG-DTA and SEM-EDS show that high-titanium blast furnace slag and steel slag promote each other and coordinate hydration under the stimulation of desulphurization gypsum. The hydration products are mainly needle-stick ettringite (AFt) and amorphous C-S-H gel. With the increase of hydration products, ettringite crystal tends to be stable, and the dense structure formed by the interpenetration of C-S-H gel and ettringite is conducive to the growth of concrete strength.
Key words:  high-titanium blast furnace slag    concrete with industrial solid wastes    ettringite (AFt)    calcium silicate hydrate gel (C-S-H gel)
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TU526  
基金资助: 国家重点研发计划(2017YFC0210301)
通讯作者:  niwen@ces.ustb.edu.cn   
作者简介:  杜惠惠,北京科技大学矿物加工工程专业博士研究生。主要从事脱硫副产物、钢渣和水淬高炉矿渣等多种固废资源的应用研究。
倪文,北京科技大学矿物加工工程系教授,博士研究生导师。长期从事矿物材料、保温耐火材料和固体废弃物资源化的研究。担任国家“863”主题项目“典型尾矿资源清洁高效利用技术及装备研究与示范”首席专家,他在国内外重要期刊发表文章300多篇,获授权发明专利28项。
引用本文:    
杜惠惠, 倪文, 高广军. 水淬高钛高炉渣制备C40全固废混凝土试验研究[J]. 材料导报, 2020, 34(24): 24055-24060.
DU Huihui, NI Wen, GAO Guangjun. Experimental Study on Preparation of C40 Concrete with Industrial Solid Wastes from High-titanium Blast Furnace Slag. Materials Reports, 2020, 34(24): 24055-24060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120047  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24055
1 Zhang S M, Bi Z X, Liu Y, et al. Hebei Metallurgy, 2014(8), 78(in Chinese).
张述明,毕忠新,刘宇,等.河北冶金,2014(8), 78.
2 Yang H M. Study on the performance of hydraulic concrete using high titanium slag as additive and aggregate. Master′s Thesis, Changjiang River Scientific Research Institute, China, 2010 (in Chinese).
杨华美.高钛矿渣作为水工混凝土掺和料及骨料性能研究.硕士学位论文,长江科学院,2010.
3 Yuan R Z, Gao Q Y, Ouyang S X. Journal of Wuhan University of Technology, 1987(3), 47(in Chinese).
袁润章,高琼英,欧阳世翕.武汉理工大学学报,1987(3), 47.
4 Fang R L, Jin C C, Chen F. Cement Technology, 1994(5), 21(in Chinese).
方荣利,金成昌,陈飞.水泥技术,1994(5), 21.
5 Fang R L, Jin C C. Cement,1998(7), 1(in Chinese).
方荣利,金成昌.水泥,1998(7), 1.
6 He N, Chu Z M, Yu D P. Development Guide to Building Materials, 2015, 13(24), 67(in Chinese).
贺宁,初志明,余德品.建材发展导向,2015,13(24), 67.
7 Yang J D, Wang W Y. Shang Y C. China Building Materials Technology, 1988(1),13(in Chinese).
杨基典,王文义,尚衍成.中国建材科技,1988(1),13.
8 Xue G L, Yang Z Q, Gao Q. Mining Research and Development, 2015(2), 21(in Chinese).
薛改利,杨志强,高谦.矿业研究与开发,2015(2), 21.
9 Tan K F, Zhou Z L. Journal of Wuhan University of Technology, 2004, 26(7), 31(in Chinese).
谭克锋,周芝林.武汉理工大学学报,2004,26(7), 31.
10 Kong X W, Wang D, Sui Z T, et al. The Chinese Journal of Process Engineering, 2006(2), 314(in Chinese).
孔祥文,王丹,隋智通,等.过程工程学报,2006(2), 314.
11 Zhu X Y, Bao W Z, Zhao W X, et al. Sichuan Building Materials, 2014(5), 84(in Chinese).
朱晓燕,包文忠,赵文新,等.四川建材,2014(5), 84.
12 Ma X M, Ni W, Liu X. Material Review B:Research Papers, 2016, 30(8), 135(in Chinese).
马旭明,倪文,刘轩.材料导报:研究篇,2016,30(8), 135.
13 Li Y, Ni W, Chen D P, et al. Journal of University of Science and Technology Beijing, 2012, 34(11), 1308(in Chinese).
李颖,倪文,陈德平,等.北京科技大学学报,2012,34(11), 1308.
14 Yang Q B. Cement & Concrete Research, 1999,29(1), 45.
15 Huang W, Ma Q Y. Coal Science and Technology, 2011, 39(3), 22(in Chinese).
黄伟,马芹永.煤炭科学技术,2011,39(3), 22.
16 Ei-Didamony H, Amer A A, Ei-Sokkary T M, et al. Ceramics International, 2013,39(1), 171.
17 Kim M S, Jun Y B, Lee C H, et al. Cement and Concrete Research, 2013,54, 208.
18 Wang Q, Yan P Y, Han S. Science China Technological Sciences, 2011,54(2), 388.
19 Wang Q,Yan P Y. Journal of Chinese Ceramic Society, 2008, 36(10), 1406(in Chinese).
王强,阎培渝.硅酸盐学报,2008,36(10), 1406.
20 Tsai C J, Huang R, Lin W T, et al. Materials & Design, 2014,60, 267.
21 Zhang X F, Ni W, Wu J Y, et al. International Journal of Minerals, Metallurgy and Materials, 2011,18(2), 234.
[1] 王卫彪, 莫立武, 邓敏. CaSO4·2H2O-C3A压实体水化产生膨胀应力的机理[J]. 材料导报, 2019, 33(8): 1307-1311.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed