Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21090022-4    https://doi.org/10.11896/cldb.21090022
  金属与金属基复合材料 |
钢渣内部金属氧化物调控提高干法脱硫性能研究
王歆銘, 马晓宇*, 崔素萍, 王剑锋, 王亚丽, 马骥堃
北京工业大学材料科学与工程学院,北京 100124
Study on Improving Dry Desulphurization Performance by Regulating Metal Oxides in Steel Slag
WANG Xinming, MA Xiaoyu*, CUI Suping, WANG Jianfeng, WANG Yali, MA Jikun
Colloge of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢渣含有大量碱金属氧化物,使其具有作为烟气脱硫剂的潜力,将钢渣改性处理用于烟气干法脱硫对生态环境保护和资源节约有深远意义。本工作从调控金属氧化物组成的角度对钢渣进行改性,提高其脱硫性能。首先证实了钢渣的化学组成中主要金属氧化物Fe2O3、Al2O3、MgO、MnO对CaO及钢渣干法脱硫的促进作用,而后通过酸、碱处理调控钢渣主要金属氧化物的组成,提升脱硫性能,并通过XRF、XRD、XPS、SO2-TPD等测试方法研究了脱硫性能提升的原因。结果表明:改性后,部分以固熔体相等结构存在的金属离子分离转化为金属氧化物,钢渣表面晶格氧、吸附氧含量增加,且晶格氧占比增大,对SO2的物理吸附、化学吸附能力增强。pH为13时,脱硫效果最佳,可达93%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王歆銘
马晓宇
崔素萍
王剑锋
王亚丽
马骥堃
关键词:  钢渣  改性  烟气干法脱硫  金属氧化物  晶格氧  吸附氧    
Abstract: The steel slag contains a lot of alkali metal oxides, which makes it have the potential as flue gas desulfurization agent. The modification of steel slag for dry flue gas desulfurization is of profound significance for ecological environment protection and resource conservation. In this work, the steel slag was modified by adjusting the composition of metal oxide to improve its desulfurization performance. Firstly, the promotion effect of the main metal oxides Fe2O3, Al2O3, MgO and MnO in the chemical composition of steel slag on CaO and dry desulfurization of steel slag was confirmed, and then the composition of the main metal oxides of steel slag was regulated by acid and alkali treatment to improve the desulfurization performance. XRF, XRD, XPS, SO2-TPD and other test methods were used to study the reasons for the improvement of desulfurization performance. The results show that after modification, some metal ions existing in the same structure of solid solution are separated into metal oxides. The content of lattice oxygen and adsorbed oxygen on the surface of steel slag increases, the proportion of lattice oxygen increases, and the physical and chemical adsorption capacity of SO2 is enhanced. When the pH value is 13, the best effect is achieved, and the desulfurization rate can reach 93%.
Key words:  steel slag    modification    dry flue gas desulfurization    metal oxid    lattice oxygen    oxygen adsorption
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  X753  
基金资助: 国家重点研发计划(2017YFB0310802);北京市教育委员会科技计划资助项目(KM201910005011)
通讯作者:  *马晓宇,北京工业大学材料科学与工程学院副教授、硕士研究生导师。2005年于南京理工大学特种能源工程与烟火技术专业本科毕业,2009年于沈阳化工学院应用化学专业硕士毕业,2012年于吉林大学取得物理化学专业理学博士学位后到北京工业大学工作至今。目前主要从事SCR脱硝催化材料、生物质基纳米复合材料等方面的研究工作。发表论文20余篇,包括Powder Technology、Polymer International、Journal of Molecular Catalysis A: Chemical、Materials等。maxiaoyu@bjut.edu.cn   
作者简介:  王歆銘,2019年6月于齐鲁工业大学取得学士学位。北京工业大学材料科学与工程学院硕士研究生,在马晓宇副教授的指导下进行研究。目前主要研究领域为生态环境材料烟气脱硫。
引用本文:    
王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
WANG Xinming, MA Xiaoyu, CUI Suping, WANG Jianfeng, WANG Yali, MA Jikun. Study on Improving Dry Desulphurization Performance by Regulating Metal Oxides in Steel Slag. Materials Reports, 2023, 37(8): 21090022-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090022  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21090022
1 Xue Y, Xia J, Lin C, et al. Applied Surface Science, 2020, 521, 146477.
2 Cao W, Zhang W J. ACS Omega, 2020, 5(47), 30740.
3 An X, Tang Q, Lan H, et al. Applied Catalysis, 2019, 244, 407.
4 Zou Z, Xu H, Li D, et al. Applied Surface Science, 2019, 463, 1011.
5 Luo S, Liu J, Wu Z. The Journal of Physical Chemistry C, 2019, 123(18), 11772.
6 Flores L A, Murphy J G, Copeland W B, et al. Computational and Theoretical Chemistry, 2017, 1120, 46.
7 Kaksonen A H, Srkij R S, Puhakka J A, et al. Minerals Engineering, 2017, 106, 97.
8 Xu N C, Liu Z, Bian S J, et al. Particuology, 2017, 27, 66.
9 Zhu J W, Wang F, Ren H Y, et al. Chinese Journal of Environmental Engineering Technology, 2011, 1(3), 205 (in Chinese).
朱金伟,王凡,任洪岩,等.环境工程技术学报,2011, 1(3), 205.
10 Li S Y, Qi W, Wu X, et al. Journal of Basic Science & Enginee-ring, 2017, 25(01), 46.
11 Meng Z, Wang C, Wang X, et al. Energy & Fuels, 2018, 32(2), 2028.
12 Xu L, Fan D D, Xia N W, et al. Sintered Pellets, 2015, 1(3), 52 (in Chinese).
徐露, 范鼎东, 夏能伟, 等.烧结球团, 2015, 1(3), 52.
13 Zhao Q, Fang Z. Materials Reports, 2015, 29(8), 130 (in Chinese).
赵前, 方周.材料导报, 2015, 29(8), 130.
14 Navarro C, Diaz M, Villa-Garcia M A, et al. Environmental Science & Technology, 2010, 44(14), 5383.
15 Xu W, He H, Yu Y. Journal of Physical Chemistry C, 2009, 113, 4426.
16 Chen Y, Yi J, Li W, et al. Catalysis Today, 1999, 50(1), 39.
[1] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[2] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[3] 李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
[4] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[5] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[6] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[7] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[8] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[9] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[10] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[11] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[12] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[13] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[14] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[15] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed