Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21090088-7    https://doi.org/10.11896/cldb.21090088
  高分子与聚合物基复合材料 |
栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附
吴肖, 魏新莉*, 赵栋, 翟文翔, 李旺
中南林业科技大学材料科学与工程学院,长沙 410004
Preparation of Graded Porous Activated Carbon from Cork and Its Adsorption Properties for Methylene Blue
WU Xiao, WEI Xinli*, ZHAO Dong, ZHAI Wenxiang, LI Wang
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 10613KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 栓皮栎软木具有蜂窝状的多孔细胞结构,碳含量高,是制备生物质活性炭的优质原料。但是现有软木活性炭孔径结构单一、比表面积小,限制了其吸附效果的发挥,构建结构稳定、高比表面积的分级多孔活性炭显得极其重要。本研究以工业废弃的栓皮栎软木粉为原料,探究了预处理温度对软木细胞蜂窝状结构的影响和所制备活性炭的吸附性能,通过调节NaOH用量与活化温度,制备出高比表面积的分级多孔栓皮栎软木活性炭(CACs),并将其用于对亚甲基蓝(MB)染料的吸附。研究结果表明,预处理温度为300 ℃、碱炭质量比为3∶1、活化温度为800 ℃是最佳的制备工艺条件,所制备的活性炭具有比表面积大(2 312.85 m2/g)、总孔容大(1.40 cm3/g)、对MB的吸附量大(850.07 mg/g)等特点。本研究显示出分级多孔软木活性炭作为高性能、低成本吸附材料的潜在应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴肖
魏新莉
赵栋
翟文翔
李旺
关键词:  栓皮栎软木  活性炭  NaOH活化  亚甲基蓝  吸附性能    
Abstract: Cork (Quercus variabilis) has a compact and orderly honeycomb-like cellular structure and high carbon content. It is a high-quality raw material for the preparation of biomass activated carbon. However, the existing cork activated carbon has a single pore structure and low specific surface area, which seriously limits its adsorption effect. How to prepare a hierarchical porous activated carbon with stable structure and high specific surface area is extremely important. In this study, the cork powder of Quercus variabilis was used as raw material and the effect of pretreatment temperature on the honeycomb-like structure of cork cells and the adsorption performance of the prepared activated carbon were explored. At the same time, hierarchical porous cork activated carbon (CACs) with high specific surface area was prepared by adjusting the mass ratios of NaOH and activation temperature and used to adsorb methylene blue (MB) dye. The results show that the best process conditions for preparing cork activated carbon is when the pretreatment temperature is 300 ℃, the mass ratios of NaOH to carbon is 3∶1 and the activation temperature is 800 ℃. The prepared cork activated carbon has the characteristics of high specific surface area (2 312.85 m2/g), large total pore volume (1.40 cm3/g) and large adsorption capacity for MB (850.07 mg/g). This paper shows the potential application prospect of hierarchical porous cork activated carbon as a high-performance and low-cost adsorption material.
Key words:  cork    activated carbon    NaOH activation    methylene blue    adsorption performance
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TQ424.1  
基金资助: 湖南省教育厅科学研究重点项目(19A530)
通讯作者:  *魏新莉,中南林业科技大学副教授。2013年7月毕业于中南林业科技大学,获木材科学与技术博士学位。2004年进入中南林学院材料科学与工程学院工作至今,主要从事生物质材料和软木功能材料的研究与应用。在国内外相关期刊发表文章30余篇,授权发明专利1项。weixl_3@163.com   
作者简介:  吴肖,本科毕业于中南林业科技大学,现为中南林业科技大学材料科学与工程学院在读硕士研究生。主要从事生物质资源利用的研究。
引用本文:    
吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
WU Xiao, WEI Xinli, ZHAO Dong, ZHAI Wenxiang, LI Wang. Preparation of Graded Porous Activated Carbon from Cork and Its Adsorption Properties for Methylene Blue. Materials Reports, 2023, 37(8): 21090088-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090088  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21090088
1 Ren Z J, Umble A K. Nature, 2016, 529(7584), 25.
2 Fadina A, Ahmad Z M A. Environmental Technology & Innovation, 2021, 23, 101727.
3 Qin B, Gu J C, Yin P, et al. Environmental Protection of Chemical Industry, 2021, 41(1),9(in Chinese).
秦彬, 谷晋川, 殷萍, 等. 化工环保, 2021, 41(1),9.
4 Nasrullah A, Saad B, Bhat A H, et al. Journal of Cleaner Production, 2019, 211, 1190.
5 Lin X, Lin G F, Huang B. Materials Reports, 2019, 33(1),198(in Chinese).
林星, 林冠烽, 黄彪. 材料导报, 2019, 33(1),198.
6 Zhao J F, Song X Z, Feng D J.Journal of Northwest A & F University(Natural Science Edition), 2019, 47(4),25(in Chinese).
赵泾峰, 宋孝周, 冯德君. 西北农林科技大学学报(自然科学版), 2019, 47(4),25.
7 Zhou J Y, Lin J, He J F, et al. Journal of Northwest Forestry University, 2010, 25(3),43(in Chinese).
周建云, 林军, 何景峰, 等. 西北林学院学报, 2010, 25(3),43.
8 Chang D L, Duan X F, Marques A V, et al. World Forestry Research,2019,32(3),30(in Chinese).
常德龙, 段新芳, Marques A V, 等. 世界林业研究, 2019, 32(3),30.
9 Wei X L, Zhong Y J, Chen Z X.Central South Forest Inventory and Planning, 2020, 39(4),32(in Chinese).
魏新莉, 仲翌京, 陈振雄. 中南林业调查规划, 2020, 39(4),32.
10 Zhao G, Duan X F, Guan T, et al.World Forestry Research,2004(5),25(in Chinese).
赵戈, 段新芳, 官恬, 等. 世界林业研究, 2004(5),25.
11 Martha D, Amaral P J, Luís A, et al.The Science of the Total Environment, 2016, 566-567, 499.
12 Xu W J, Qiu D P, Liu S Q, et al.Journal of Inorganic Materials, 2019, 34(6),625(in Chinese).
许伟佳, 邱大平, 刘诗强, 等. 无机材料学报, 2019, 34(6),625.
13 Tadepalli M, Srinivasan A, Shekhar S C, et al. Journal of Energy Sto-rage, 2021, 34, 102017.
14 Li S J, Han K H, Han X D,et al. Materials Reports, 2017,31(6),38(in Chinese).
李诗杰, 韩奎华, 韩旭东, 等. 材料导报, 2017, 31(6),38.
15 An Q, Chen D Z, Qin P, et al. China Environmental Science, 2021,41(10), 4720(in Chinese).
安青, 陈德珍, 钦佩, 等. 中国环境科学, 2021,41(10),4720.
16 Zhang X F, Elsayed I, Song X Z, et al. Science of the Total Environment, 2020, 748,142465.
17 Pereira H.Cork: biology, production and use. Elsevier B.V, 2007,pp.1.
18 Wang Q H, Lai Z Y, Mu J, et al. Waste management, 2020, 105,102.
19 Xiang X A, Yang G A, Rui S A, et al. Applied Surface Science, 2021,565,150550.
20 Ren S H, Deng L P, Zhang B, et al. Materials (Basel, Switzerland), 2019, 12(10),1675.
21 Wang Q H, Lai Z Y, Luo C M, et al. Journal of Hazardous Materials, 2021, 416,125896.
22 Piñero E R, Azaïs P, Cacciaguerra T, et al. Carbon, 2004, 43(4),786.
23 Shangguan W W, Chen Z J, Zhao J F, et al. Wood Science and Technology, 2018, 52,181.
24 Tseng R L.Journal of Hazardous Materials, 2007, 147(3),102.
25 He Y S, Li Z, Xi H X, et al.Ion Exchange and Adsorption, 2004(4),376(in Chinese).
何余生, 李忠, 奚红霞, 等. 离子交换与吸附, 2004(4),376.
26 Yu Y, Qiao N, Wang D, et al.Bioresource Technology, 2019, 285,121340.
27 Fan Y H, Yu N H, Deng L Y, et al.Journal of Northwest Forestry University, 2019, 34(5),187(in Chinese).
范友华, 喻宁华, 邓腊云, 等. 西北林学院学报, 2019, 34(5),187.
28 Fan Z H, Zhou Y T, Yang M L, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2022, 39(6), 14 (in Chinese).
范子红, 周雨婷, 杨梅林, 等. 重庆工商大学学报(自然科学版), 2022, 39(6),14.
[1] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[2] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[3] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[4] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[5] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[6] 李诗杰, 韩奎华. 利用少量氧化镍负载提高活性炭比电容[J]. 材料导报, 2021, 35(4): 4012-4016.
[7] 黄慧娟, 李世杰, 尚莉莉, 马建锋, 刘杏娥. 低浓度酸碱改性竹质活性炭对甲醛吸附性能的研究[J]. 材料导报, 2021, 35(24): 24041-24046.
[8] 马娅娅, 李强, 穆保霞, 马旭. 铁含量对Fe-P-C非晶合金降解亚甲基蓝性能的影响[J]. 材料导报, 2021, 35(21): 21085-21090.
[9] 杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124.
[10] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
[11] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[12] 张净净, 李海朝. 磷酸活化鱼鳞活性生物炭的制备及表征[J]. 材料导报, 2020, 34(Z1): 116-119.
[13] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[14] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[15] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed