Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21100069-11    https://doi.org/10.11896/cldb.21100069
  高分子与聚合物基复合材料 |
植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用
杨赟, 刘璇, 崔益华*, 余彤, 武康乐, 潘蕾*
南京航空航天大学材料科学与技术学院,南京 211816
Research Progress and Application of Interfacial Nano-modification on Natural Fiber Reinforced Resin Matrix Composites
YANG Yun, LIU Xuan, CUI Yihua*, YU Tong, WU Kangle, PAN Lei*
College of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 211816, China
下载:  全 文 ( PDF ) ( 9544KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 植物纤维是一种来源广、价格低的可生物降解材料,以植物纤维代替传统的合成纤维增强复合材料可有效缓解环境压力。然而,植物纤维与树脂基体的界面不相容限制了植物纤维增强复合材料(PFRP)的广泛应用。对PFRP进行界面改性可以有效增强其界面结合,从而提高复合材料的综合性能。传统的物理改性和化学改性对植物纤维自身有一定损伤,影响复合材料的力学性能。因此,本文综述了近年来国内外PFRP界面纳米化改性的研究进展,首先介绍了植物纤维的物理构造与化学组成,其次详述了PFRP界面纳米化改性方法,最后总结了界面表征方法和应用,并对今后PFRP界面纳米化改性的相关问题提出建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨赟
刘璇
崔益华
余彤
武康乐
潘蕾
关键词:  植物纤维  复合材料  纳米化改性  界面表征    
Abstract: Natural fiber is a biodegradable material with a wide range of sources and low price, which could effectively relieve the environmental pressure when used in place of traditional synthetic fiber to reinforce composites. However, there is an obvious limitation in the wide application of plant fiber reinforced composites due to the mismatched polarity between natural fiber matrix and resin. Effectively optimized interfacial adhesion between natural fibers and polymer matrix could be achieved by interface modification, with comprehensive properties of the composites improved. It is reported that traditional physical modification and chemical modification could damage the plant fiber and affect the mechanical properties of the composites. Thus, this paper reviews the research progress on the interfacial nano-modification with mid reaction conditions of natural fiber reinforced composites in recent years. Firstly, we introduces the physical structure and chemical composition of natural fibers briefly. Secondly, it is necessary to describe the interfacial nano-modification methods of natural fiber reinforced composites in detail. Finally, the interfacial characterization methods and practical applications of natural fiber reinforced composites are illustrated, and the future development trend about the interface modification of natural fiber reinforced composites are prospected reasonably.
Key words:  natural fiber    composite material    nanometer modification    interfacial characterization
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52175329)
通讯作者:  *崔益华,工学博士,南京航空航天大学教授、博士研究生导师。1989—2007年于南京航空航天大学分别获工学学士、硕士和博士学位。主要研究领域为高分子材料的化学设计、合成、修饰以及高分子复合材料的界面设计等。在国内外核心期刊和国际学术会议上发表论文80余篇,其中SCI、EI、ISTP收录40篇次。出版著作5部,申请国家发明专利21项,获授权13项。cuiyh@nuaa.edu.cn
潘蕾,工学博士,南京航空航天大学教授、博士研究生导师。1993—2000年于南京航空航天大学获得工学学士和硕士学位,2004年于东南大学获得工学博士学位。主要研究领域为功能材料设计及应用,材料表/界面处理及功能化设计,基于分子动力学复合材料多尺度建模、计算,超混杂纤维金属层板设计-制备-成型-应用。发表论文40余篇,其中SCI收录30余篇。申请专利20余项,获授权10项。Bettypan@nuaa.edu.cn   
作者简介:  杨赟,2020年毕业于南京航空航天大学,获得理学硕士学位。现为南京航空航天大学材料科学与技术学院博士研究生,在崔益华教授的指导下进行研究。目前主要研究领域为植物纤维增强复合材料。
引用本文:    
杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
YANG Yun, LIU Xuan, CUI Yihua, YU Tong, WU Kangle, PAN Lei. Research Progress and Application of Interfacial Nano-modification on Natural Fiber Reinforced Resin Matrix Composites. Materials Reports, 2023, 37(8): 21100069-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100069  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21100069
1 Yi X S, Li Y. Bio-sourced resins, plant fibers and biocomposites, China Building Materials Press, China, 2017 (in Chinese).
益小苏, 李岩.生物质树脂、纤维及生物复合材料, 中国建材工业出版社, 2017.
2 Li Y, Mai Y W, Ye L. Composites Science and Technology, 2000, 60(11), 2037.
3 Gurunathan T, Mohanty S, Nayak S K. Composites Part A: Applied Science and Manufacturing, 2015, 77, 1.
4 Yang X G, Wu Q L. Interfacial behaviours in composites, Chemical Industry Press, China, 2019 (in Chinese).
杨序纲, 吴琪琳.复合材料的界面行为, 化学工业出版社, 2019.
5 Bledzki A, Gassan J.Progress in Polymer Science, 1999, 24(2), 221.
6 Baiardo M, Frisoni G, Scandola M, et al. Journal of Applied Polymer Science, 2002, 83(1), 38.
7 Park S, Seo M, Ma T, et al. Journal of Colloid and Interface Science, 2002, 252(1), 249.
8 Marais S, Gouanvé F, Bonnesoeur A, et al. Composites Part A: Applied Science and Manufacturing, 2005, 36(7), 975.
9 Le-Troedec M, Rachini A, Peyratout C. Composites Part B: Engineering, 2018, 133, 210.
10 Cai M, Takagi H, Nakagaito A N, et al. Composites Part A: Applied Science and Manufacturing, 2016, 90, 589.
11 Orue A, Jauregi A, Unsuain U, et al. Composites Part A: Applied Science and Manufacturing, 2016, 84, 186.
12 Liu X. Study of multi-phase interfaces for n-SiO2@jute fiber/PP compo-sites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2021 (in Chinese).
刘璇. n-SiO2@黄麻纤维/PP复合材料的多相界面研究. 博士学位论文, 南京航空航天大学, 2021.
13 Pereira P H F, Rosa M D, Cioffi M O H, et al. Polimeros-ciencia e Tecnologia, 2015, 25(1), 9.
14 Thomason J L, Rudeiros-Fernandez J L. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106478.
15 Charlet K, Baley C, Morvan C, et al. Composites Part A: Applied Science and Manufacturing, 2007, 38(8), 1912.
16 Shen H R, Yu W D. Plant Fiber Sciences in China, 2008, 30(1), 33 (in Chinese).
沈海蓉, 于伟东. 中国麻业科学, 2008, 30(1), 33.
17 Lu B, Zhang L W, Zeng J C,et al. Natural fiber composite materials, Chemical Industry Press, China, 2005 (in Chinese).
鲁博, 张林文, 曾竟成, 等. 天然纤维复合材料, 化学工业出版社, 2005.
18 Yu W D. Textile materials science, China Textile & Apparel Press, China, 2008 (in Chinese).
于伟东. 纺织材料学, 中国纺织出版社, 2008.
19 Liu Z G, Gao Y, Jin H, et al. China Measurement & Test, 2015, 41(2), 38 (in Chinese).
刘治刚, 高艳, 金华, 等. 中国测试, 2015, 41(2), 38.
20 Song P, Zhou F, Li F, et al. Carbohydrate Polymers, 2021, 253, 117207.
21 Zhang M. Study on preparation of nano-SiO2/jute fiber composite reinforcement via polyelectrolyte method and its modified polypropylene. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese).
张邈. 黄麻纤维表面纳米SiO2的聚电解质法制备及其增强聚丙烯复合材料研究. 硕士学位论文, 南京航空航天大学, 2020.
22 Xia Y Y. Modification of flax fiber reinforced polymer(FFRP) composites and the compressive properties of the confined concrete columns. Ph.D. Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).
夏媛媛. 改性亚麻纤维复合材料及其约束混凝土柱的轴压性能研究. 博士学位论文, 哈尔滨工业大学, 2016.
23 Hu Q X. The flame retardancy and moisture absorption of fiber/polypropylene composites. Master's Thesis, Changchun University of Technology, China, 2017 (in Chinese).
胡求学. 麻纤维/聚丙烯复合材料的阻燃与吸湿性能研究. 硕士学位论文, 长春工业大学, 2017.
24 Bai S Y. Regulation mechanism of chemical composition of hemp fiber on its mechanical properties. Master's Thesis, Tianjin polytechnic University, China, 2017 (in Chinese).
白肃跃. 洋麻纤维化学成分对其力学性能的调控机理探究. 硕士学位论文, 天津工业大学,2017.
25 Liu X, Cui Y H, Lee K L S, et al.Composites Science and Technology, 2020, 188, 107987.
26 Liu X, Cui Y H, Hao S J, et al. Composites Part A: Applied Science and Manufacturing, 2018, 109, 368.
27 Patterson B A, Sodano H A. ACS Applied Materials & Interfaces, 2016, 8(49), 33963.
28 Wang B, Duan Y G, Zhang J J. Applied Surface Science, 2016, 389, 96.
29 Foruzanmehr M, Vuillaume P Y, Elkoun S, et al. Materials & Design, 2016, 106, 295.
30 Prasad V, Sekar K, Joseph M A. Polymer Testing, 2020, 91, 106784.
31 Cheng H T. Enhancement of interfacial adhesion between bamboo fiber and thermoplastic polymer by calcium carbonate deposition in situ on bamboo fiber. Ph.D. Thesis, Chinese Academy of Forestry, China, 2016 (in Chinese).
程海涛. 竹纤维表面CaCO3改性及增强竹塑复合材料界面研究. 博士学位论文, 中国林业科学研究院, 2016.
32 Zhang S, Zhang F, Pan Y, et al. RSC Advances, 2018, 8(11), 5678.
33 Ma Y B. Modification of polypropylene-based wood-plastic composites by using inorganic nano-fillers. Master's Thesis, South China University of Technology, China, 2020 (in Chinese).
马源彬. 基于无机纳米填料的聚丙烯基木塑复合材料改性研究. 硕士学位论文, 华南理工大学, 2020.
34 Liao Y J, Wu X L.Engineering Plastics Application, 2018, 46(7), 101(in Chinese).
廖益均, 吴晓莉. 工程塑料应用, 2018, 46(7), 101.
35 Huang Z M, Zhang Y Z, Kotaki M. Composites Science and Technology, 2003, 63(15), 2223.
36 Huang H G.Acta Materiae Compositae Sinica, 2015, 32(3), 625 (in Chinese).
黄怀国.复合材料学报, 2015, 32(3), 625.
37 Zhang K M, Xie T, Zhao Y, et al. Materials Reports B: Research Papers, 2018, 32(12), 4370.
张靠民, 谢涛, 赵焱, 等. 材料导报:研究篇, 2018, 32(12), 4370.
38 Deng B Y, Wei Q F, Gao W D, et al.Polymer Materials Science and Engineering, 2007, 23(6), 101 (in Chinese).
邓炳耀, 魏取福, 高卫东, 等. 高分子材料科学与工程, 2007, 23(6), 101.
39 Miao D G, Hu H W, Li A S, et al. Ceramics International, 2015, 41(7), 9177.
40 Ye X Z, Wang H, Zheng K, et al.Composites Science and Technology, 2016, 124, 1.
41 Bian H G, Zhang M, Han D S, et al. China Rubber Industry, 2021, 68(2), 109 (in Chinese).
边慧光, 张萌, 韩德上, 等. 橡胶工业, 2021, 68(2), 109.
42 Prasad V, Sekar K, Joseph M A.Construction and Building Materials, 2021, 284, 122803.
43 Rahman M M, Rahman M R, Hamdan S.Journal of Vinyl and Additive Technology, 2015, 25(2), 123.
44 Liu X, Cui Y H. Composite Structures, 2021, 267, 13865.
45 Liu X, Hao S J, Cui Y H, et al.Journal of Industrial Textiles, 2020, 49(7), 906.
46 Foruzanmehr M, Vuillaume P Y, Elkoun S, et al. Materials & Design, 2016, 106, 295.
47 Lee S H, Wang S Q, Pharr G M, et al. Holzforschung, 2007, 61, 254.
48 Ahmet C K, Serhan K, Yasemin S, et al. Composites Part B: Enginee-ring, 2018, 140, 1.
49 Zhao Z B, Teng K Y, Li N, et al. Composite Structures, 2017, 159, 761.
50 Mayer C, Foulon L, Denoual C, et al. Industrial Crops & Products, 2021, 167, 113482.
51 Makyla K, Muller C, Lorcher S, et al. Advanced Materials, 2013, 25(19), 2701.
52 József K K, Haroon M, Alessandro P. Progress in Materials Science, 2015, 73, 1.
53 Liu X. Effect of ramie fiber surface modification on mechanical properties of ramie fiber composites. Master's Thesis, Tianjin Polytechnic University, China, 2016 (in Chinese).
刘璇. 苎麻纤维表面改性对其复合材料力学性能影响的研究. 硕士学位论文, 天津工业大学, 2016.
54 Zhang X C. Degumming technology of cotton stalk bast fibers and its analysis of degumming effect. Master's Thesis, Dalian Polytechnic University, China, 2012 (in Chinese).
张晓岑. 棉秆皮脱胶技术及其脱胶效果分析. 硕士学位论文, 大连工业大学, 2012.
55 Ibraheem S A, Sreenivasan S S, Abdan K, et al. BioResources, 2016, 11(4), 8968.
56 Li J. Cryogenic interfacial properites of attapulgite-graphene oxide/carbon fiber composites. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
李君. 凹凸棒土-氧化石墨烯/碳纤维复合材料低温界面性能研究. 硕士学位论文, 哈尔滨工业大学, 2018.
57 Li Y, Chen C, Xu J, et al.Journal of Materials Science, 2015, 50, 1117.
58 Zhang H K, Wang C H, Zuo Q, et al. Acta Materiae Compositae Sinica, 2022, 39(5), 2153(in Chinese).
张洪康, 王春红, 左祺, 等. 复合材料学报, 2022, 39(5), 2153.
59 Qian B Z. Synthetic Fiber in China, 2021, 50(1), 57(in Chinese).
钱伯章. 合成纤维, 2021, 50(1), 57.
60 Wang H B, Fan J, Liu F S, et al. New Building Materials, 2013, 40(1), 52 (in Chinese).
王宏斌, 范军, 刘福胜, 等. 新型建筑材料, 2013, 40(1), 52.
[1] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[2] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[3] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[4] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[5] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[6] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[7] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[8] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[9] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[10] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[11] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[12] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[13] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[14] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[15] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed