Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21090118-9    https://doi.org/10.11896/cldb.21090118
  无机非金属及其复合材料 |
基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料
刘云福1, 刘峰2, 姚初清1, 蒋丹枫2, 韩文敏1, 戴耀东1,*
1 南京航空航天大学材料科学与技术学院,南京 211106
2 中广核研究院有限公司,广东 深圳 518028
A Novel High-Temperature Resistant Neutron Shielding Material Prepared by Negative Pressure Impregnation Method Based on Interpenetrating Network of Foam Ceramics
LIU Yunfu1, LIU Feng2, YAO Chuqing1, JIANG Danfeng2, HAN Wenmin1, DAI Yaodong1,*
1 College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106, China
2 China Nuclear Power Technology Research Institute,Shenzhen 518028, Guangdong, China
下载:  全 文 ( PDF ) ( 21192KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作制备了一种具有互穿网络结构的新型泡沫陶瓷/硼酚醛树脂复合材料,采用有机泡沫浸渍法和惰性气氛烧结制备了莫来石/碳化硼骨架增强体,采用负压浸渍和原位热固化方法制备了碳化硼/硼酚醛树脂基体。实验探究了微粉含量(碳化硼和高岭土各10%~30%)和烧结温度(1 300~1 500 ℃)对陶瓷骨架和复合材料的影响;当烧结温度设置为1 350 ℃,粉体原料质量占比设置为氧化铝55%、碳化硼15%、高岭土25%、二氧化钛5%时,烧结而成的陶瓷骨架与20%(质量分数)碳化硼/硼酚醛树脂的填充材料形成新型中子屏蔽复合材料,其综合性能可达到最优化;此时,泡沫陶瓷骨架线收缩率为3.36%,堆积密度为0.54 g/cm3,显气孔率为73.7%,骨架抗压强度为0.94 MPa;陶瓷/硼酚醛树脂复合材料显气孔率为0.2%,堆积密度为1.22 g/cm3,抗压强度为86 MPa;300 ℃保温10 h冷却后,残余抗压强度为54 MPa,抗压残余比为62%,服役温度为180~330 ℃;10%(质量分数)硼酸溶液浸泡72 h后,失重率为0.31%,残余抗压强度为82.5 MPa,抗压残余比为95.7%。放置于241Am-Be中子源前,复合材料(12~13 mm厚)总中子线性衰减系数为0.356 cm-1,总中子屏蔽率为35.5%,热中子线性衰减系数为1.061 cm-1, 热中子屏蔽率为73.0%。该新型中子屏蔽材料不仅具有三维互穿网络结构,还包含了含硼骨架/含硼树脂/含硼填料的多级结构,为一种性能优良的耐高温新型中子屏蔽材料提供了设计参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘云福
刘峰
姚初清
蒋丹枫
韩文敏
戴耀东
关键词:  三维互穿网络  硼体系多级结构  莫来石  陶瓷/树脂复合材料  中子屏蔽材料    
Abstract: In this work, a novel ceramic foam/boron phenolic resin composite with interpenetrating network structure was prepared. Mullite/boron carbide skeleton reinforcement was prepared by organic foam impregnation and inert atmosphere sintering, and boron carbide/boron phenolic resin matrix was prepared by negative pressure impregnation and in situ curing. The effects of powder content (10%—30% boron carbide and kaolin) and sintering temperature (1 300—1 500 ℃) on ceramic skeleton and composite were investigated experimentally. It was found that when the sintering temperature was 1 350 ℃ and the skeleton ratio was 55% alumina, 15% boron carbide, 25% kaolin and 5% titanium dioxide respectively, the comprehensive performance of the new neutron shielding composite material was optimized with 20wt% boron carbide/boron phenolic resin. At this situation, the linear shrinkage, bulk density, apparent porosity and compressive strength of foam ceramic skeleton were 3.36%, 0.54 g/cm3, 73.7% and 0.94 MPa respectively. The apparent porosity, bulk density and compressive strength of ceramic/boron-phenolic resin composites were 0.2%, 1.22 g/cm3 and 86 MPa respectively. After ageing 10 h at 300 ℃, the residual compressive strength, residual ratio and service temperature of composites were 54 MPa, 62% and 180—330 ℃ respectively. After soaking in 10wt% boric acid solution for 72 h, the residual compressive strength, residual ratio and weight loss of composites were 82.5 MPa, 95.7% and 0.31% respectively. When placed in front of the 241Am-Be neutron source, the total neutron linear attenuation coefficient and total neutron shielding rate of composites(12—13 mm)were 0.356 cm-1 and 35.5%, while the thermal neutron linear attenuation coefficient and thermal neutron shielding rate of composites were 1.061 cm-1 and 73.0%.The novel neutron shielding material not only has a three-dimensional interpenetrating network structure, but also contains a multistage structure including boron skeleton/boron resin/boron filler, which provides a reference for the design of a novel neutron shielding material with excellent performance and high temperature resistance.
Key words:  three dimensional interpenetrating network    multistage structure of boron system    mullite    ceramic/resin composites    neutron shielding material
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  X34  
  X946  
基金资助: “十三五”核能开发科研项目
通讯作者:  *戴耀东,南京航空航天大学教授。2003年毕业于南京大学,获物理学博士学位。主要从事核辐射物理及核分析技术应用、材料的辐照改性和辐射屏蔽材料的研究和开发工作。承担或主持完成各类基金项目10余项,在国内外著名刊物发表论文50余篇。yd_dai@nuaa.edu.cn   
作者简介:  刘云福,本科毕业于南京航空航天大学,目前于南京航空航天大学材料科学与技术学院攻读工程硕士学位,主要从事辐射防护材料领域的研究。
引用本文:    
刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
LIU Yunfu, LIU Feng, YAO Chuqing, JIANG Danfeng, HAN Wenmin, DAI Yaodong. A Novel High-Temperature Resistant Neutron Shielding Material Prepared by Negative Pressure Impregnation Method Based on Interpenetrating Network of Foam Ceramics. Materials Reports, 2023, 37(8): 21090118-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090118  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21090118
1 Wang D, Peng X, Si F, et al.Radiation Physics and Chemistry, 2021, 188,109570.
2 Wang F, Xie D S, Zhang A Y, et al. Journal of Chongqing University of Technology(Natural Science),2021, 35(3),100.
王斐, 谢东升, 张瑷月, 等.重庆理工大学学报(自然科学),2021,35(3),100.
3 Postuma I, Sommi P, Vitali A, et al. Applied Radiation and Isotopes, 2021, 167,109353.
4 Mizushima K, Furukawa T, Iwata Y, et al. Nuclear Instruments & Me-thods in Physics Research. B, Beam Interactions with Materials and Atoms, 2019, 459(15),115.
5 Saeed A, Murshed M N, Al-Shahari E A.Environmental Science and Pollution Research, 2020, 27(32), 40443.
6 Lu N, Lu Z G.Advanced Rubber Technology, 2017, 43(3),1(in Chinese).
陆宁, 陆振光.现代橡胶技术, 2017, 43(3),1.
7 Gao X J, Yan D M, Cao J W, et al.Ceramics, 2016(11),15(in Chinese).
高晓菊, 燕东明, 曹剑武, 等.陶瓷, 2016(11),15.
8 Wang Y R, Zhao Y, Jiang M Z, et al.Journal of Netshape Forming Engineering, 2019,11(3),166(in Chinese).
王玉容,赵勇,蒋明忠, 等.精密成形工程, 2019,11(3),166.
9 Liu G R, Pei Y B. Powder Metallurgy Industry, 2018,28(5),1(in Chinese).
刘桂荣,裴燕斌.粉末冶金工业, 2018,28(5),1.
10 Soy U, Demir A.Emerging Materials Research, 2020, 9(2), 1.
11 Wang G H, He M L, Chai F C, et al.Progress in Nuclear Energy, 2019, 112,225.
12 Wang P, Tang X, Chai H, et al.Fusion Engineering & Design, 2015, 101,218.
13 Wu P, Liu M, Fu J J, et al. New Chemical Materials, 2018,46(4),51(in Chinese).
吴鹏, 刘淼, 付俊杰, 等.化工新型材料, 2018,46(4),51.
14 Chai F C, Wang G H, Dai Y D, et al. Materials Reports, 2019,33(S1),444(in Chinese).
柴凡超, 王国辉, 戴耀东, 等.材料导报, 2019,33(S1),444.
15 Luo H, Li Y, Xiang R, et al.Materials Letters, 2019, 243,92.
16 Hu C, Zhai Y, Song L, et al. Polymer Composites, 2020, 41(4),1418.
17 Jiang D F, Wang G H, Dai Y D, et al.Materials Reports, 2017,31(6),56(in Chinese).
蒋丹枫, 王国辉, 戴耀东, 等.材料导报, 2017,31(6),56.
18 Gong J J, Chen Z G, Huang S X, et al.Atomic Energy Science and Technology, 2021,55(7),8(in Chinese).
龚军军, 陈志刚, 黄颂新, 等.原子能科学技术, 2021,55(7),8.
19 Wang Y F. Preparation of neutron shielding material based on foam ceramics from fly ash. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2019(in Chinese).
汪瑜凡. 粉煤灰制备以泡沫陶瓷为骨架的中子屏蔽材料.硕士学位论文, 南京航空航天大学, 2019.
20 Zhang X, Yang M, Zhang X, et al.Composites Science and Technology, 2017, 150(29),16.
21 Hei D, Chen R, Liu F, et al.Journal of Alloys and Compounds, 2020, 845,156328.
22 Wang Z. Study on preparation methods、microstructure and properties of porous mullite from coal-series kaolin. Master's Thesis, China University of Mining and Technology, China, 2017(in Chinese).
王章. 煤系高岭土制备多孔莫来石工艺、组织和性能的研究.硕士学位论文, 中国矿业大学, 2017.
23 Chen X F, Li S J, Yan L S, et al.Acta Materiae Compositae Sinica, 2011(5),89(in Chinese).
陈孝飞, 李树杰, 闫联生, 等.复合材料学报, 2011(5),89.
24 Lu Q. Fabrication and thermal pyrolysis behavior of BPFR based composites. Master's Thesis, Wuhan University of Technology, China, 2015(in Chinese).
卢勤. BPFR基耐烧蚀复合材料的制备及其热裂解行为研究.硕士学位论文, 武汉理工大学, 2015.
[1] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[2] 苗立锋, 江伟辉, 包镇红. 高铝强化硬质瓷的制备及微观结构研究[J]. 材料导报, 2021, 35(24): 24057-24061.
[3] 刘振英, 朱金波, 刘银, 薛长国, 姜悦纳. 氧化钴掺杂对溶胶凝胶法合成莫来石微观结构和烧结性能的影响[J]. 材料导报, 2020, 34(24): 24005-24009.
[4] 王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed