Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 21010085-5    https://doi.org/10.11896/cldb.21010085
  无机非金属及其复合材料 |
高压电瓷废料制备低密度高强度陶粒支撑剂及其性能
付鹏程1, 肖国庆1,*, 丁冬海1, 方宇飞1, 种小川1, 朱现峰2
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 郑州市润宝耐火材料有限公司,郑州 452300
Preparation and Properties of Low Density and High Strength Ceramic Proppant from High Voltage Electric Porcelain Waste
FU Pengcheng1, XIAO Guoqing1,*, DING Donghai1, FANG Yufei1, CHONG Xiaochuan1, ZHU Xianfeng2
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Zhengzhou Runbao Refractory Co., Ltd., Zhengzhou 452300, China
下载:  全 文 ( PDF ) ( 3515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以高压电瓷废料为原料,通过气流超细粉碎、圆盘造粒,经1 180~1 260 ℃烧结制备油气开采水力压裂用陶粒支撑剂。通过X射线衍射(XRD)和扫描电子显微镜(SEM)对不同烧结温度陶粒支撑剂试样的物相组成和微观形貌进行分析,通过石油天然气行业标准中的方法测试试样的密度、破碎率及酸溶解度,研究烧结温度对试样微观结构和性能的影响。结果表明,支撑剂主要物相为莫来石和刚玉,随着烧结温度的升高,针状莫来石晶粒逐渐长大,并互相交错堆叠形成网格状结构,液相均匀分散并包裹于晶粒,使试样致密化程度提高。但烧结温度过高会导致试样内二次莫来石化程度变高,部分莫来石晶粒异常长大,使支撑剂整体表现出高的空隙率,影响试样强度。试样在1 220 ℃表现出最高视密度和最低破碎率,在69 MPa闭合压力下其破碎率仅为6.1%、视密度为2.74 g/cm3,符合SY/T5108-2014中关于低密度陶粒支撑剂的标准要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付鹏程
肖国庆
丁冬海
方宇飞
种小川
朱现峰
关键词:  陶粒支撑剂  烧结温度  二次莫来石化  破碎率    
Abstract: Ceramic proppant for hydraulic fracturing in oil and gas exploitation was prepared from high voltage electric porcelain waste by air flow superfine grinding, disc granulation and sintering at 1 180—1 260 ℃. The phase composition and micro morphology of ceramic proppant samples sintered at different temperatures were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The density, crushing rate and acid solubility of samples were tested by the methods of petroleum and natural gas industry standards, and the effects of sintering temperature on microstructure and properties of samples were studied. The results show that the main phases of proppant are mullite and corundum. With the increase of sintering temperature, the acicular mullite grains grow up gradually and form a grid structure. The liquid phase is uniformly dispersed and wrapped in the grains, which improves the densification of the sample. However, if the sintering temperature is too high, the degree of secondary mullite in the sample will become higher, and some mullite grains will grow abnormally, resulting in high porosity of proppant and affecting the strength of the sample. The sample shows the highest apparent density and the lowest crushing rate at 1 220 ℃, while the crushing rate is only 6.1% under 69 MPa closing pressure and the apparent density is 2.74 g/cm3, which meets the standard requirements of low density ceramic proppant in SY/T5108-2014.
Key words:  ceramic proppant    sintering temperature    secondary mullite    breakage ratio
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TQ174.75  
基金资助: 国家自然科学基金(51572212;51772236);陕西省重点研发计划项目(2018ZDXM-GY-128);陕西省教育厅协同创新项目(Z20200170)
通讯作者:  xiaoguoqing@xauat.edu.cn   
作者简介:  付鹏程,2018年9月至今就读于西安建筑科技大学材料科学与工程学院,攻读材料学硕士学位,主要从事无机非金属材料、高温陶瓷材料的研究。
肖国庆,西安建筑科技大学材料科学与工程学院教授,博士研究生导师,2005年获西安交通大学材料科学与工程专业博士学位,2005年晋升教授,2008.10—2009.10英国谢菲尔德大学访问学者。主要从事结构功能一体化陶瓷基复合材料、低碳耐火材料研究,以第一作者及合作者在国内外期刊发表学术论文100多篇。目前主持国家级科研项目2项、省部级科研项目5项,受邀担任Composites ACeramics InternationalInternational Journal of the Applied Ceramic Technology等10余种国际期刊审稿人。
引用本文:    
付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
FU Pengcheng, XIAO Guoqing, DING Donghai, FANG Yufei, CHONG Xiaochuan, ZHU Xianfeng. Preparation and Properties of Low Density and High Strength Ceramic Proppant from High Voltage Electric Porcelain Waste. Materials Reports, 2022, 36(4): 21010085-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010085  或          http://www.mater-rep.com/CN/Y2022/V36/I4/21010085
1 Lee D S, Elsworth D, Yasuhara H, et al. Journal of Petroleum Science and Engineering, 2010, 8, 1.
2 Xiang C C, Gao S. Chemical Enterprise Management, 2018(2), 241(in Chinese).
项成成, 高嵩. 化工管理, 2018(2), 241.
3 Khosrokhavar R, Griffiths S, Wolf K H. Environmental Processes, 2014, 1, 595.
4 Song X L. Study on preparation of petroleum fracturing ceramsite proppant from industrial solid waste. Master's Thesis, Qilu University of Technology, China, 2019(in Chinese).
宋学磊. 利用工业固体废料制备石油压裂陶粒支撑剂的研究. 硕士学位论文, 齐鲁工业大学, 2019.
5 Huang B, Gao Y F, Tian Y M, et al. Journal of Taiyuan University of Science and Technology, 2020, 41(3), 220(in Chinese).
黄彪, 高云峰, 田玉明, 等. 太原科技大学学报, 2020, 41(3), 220.
6 Zhao Z S, Cui L P, Zhao X, et al. Shanxi Coal, 2019, 39(1), 1(in Chinese).
赵紫石, 崔李鹏, 赵旭, 等. 山西煤炭, 2019, 39(1), 1.
7 Gao R Q, Wu J Y, Wang Z K, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(6), 1319(in Chinese).
高如琴, 吴洁琰, 王紫括, 等. 硅酸盐通报, 2014, 33(6), 1319.
8 Luo H Y, Wang B L, Guo C P. Insulators and Surge Arresters, 2006(2), 15(in Chinese).
罗汉英, 汪蓓蕾, 郭翠萍. 电瓷避雷器, 2006(2), 15.
9 Chen P. Insulators and Surge Arresters, 2004(6), 12(in Chinese).
陈平. 电瓷避雷器, 2004(6), 12.
10 Han D H, Kang D J, Kang D P, et al. Polymer Bulletin,2008,61,611.
11 Xu N N. Structure and property of light-weight materials prepared from insulators waste. Master's Thesis, Wuhan University of Science and Technology, China, 2015(in Chinese).
徐娜娜. 废弃电瓷制备轻质隔热材料的结构与性能. 硕士学位论文, 武汉科技大学, 2015.
12 National Energy Administration. SY/T5108—2014 Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations, Petroleum Industry Press, 2015(in Chinese).
国家能源局. SY/T5108—2014水力压裂和砾石充填作业用支撑剂性能测试方法, 石油工业出版社, 2015.
13 Tian Y M, Zhu B S, Li G M, et al. Journal of the Chinese Ceramic Society, 2019, 47(3), 365(in Chinese).
田玉明, 朱保顺, 力国民, 等. 硅酸盐学报, 2019, 47(3), 365.
14 Li G M, Chang X, Zhu B S, et al. Journal of Synthetic Crystals, 2018, 47(9), 1850(in Chinese).
力国民, 常鑫, 朱保顺, 等. 人工晶体学报, 2018, 47(9), 1850.
15 Zhao J Z, Liu Z L, Li Y M. Materials Letters, 2015, 152, 72.
16 Liu Z L, Zhao J Z, Li Y M, et al. Materials Letters, 2016, 171, 300.
17 Ma H Q, Tian Y M, Zhou Y, et al. International Journal of Applied Ceramic Technology, 2018, 15, 191.
18 Ma J W, Wu G L, Zhang J Q. Light Metals,2019(10),8(in Chinese).
马俊伟, 吴国亮, 张建强. 轻金属, 2019(10), 8.
19 Ma J W, Wu G L, Zhang J Q. Conservation and Utilization of Mineral Resources, 2019, 39(3), 151(in Chinese).
马俊伟, 吴国亮, 张建强. 矿产保护与利用, 2019, 39(3), 151.
[1] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[2] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[3] 蒋晔, 颜建辉, 李茂键. 不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能[J]. 材料导报, 2020, 34(18): 18025-18029.
[4] 张丛, 曹剑武, 林广庆, 王成, 刘发付, 郭建斌, 郭在在, 乔光利, 庄杰, 黄维平. 烧结温度对AlON性能的影响[J]. 材料导报, 2019, 33(Z2): 158-160.
[5] 董善亮,霍思嘉,甄淑颖,张宇民,王玉金. 烧结温度对反应热压烧结制备ZrB2-ZrC-W2Zr复合材料组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1994-1997.
[6] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed