Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 22010088-6    https://doi.org/10.11896/cldb.22010088
  高分子与聚合物基复合材料 |
3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能
程平, 彭勇, 汪馗*, 姚松, 刘志祥
中南大学轨道交通安全教育部重点实验室,长沙 410075
Quasi Static Penetration Property of 3D Printed Continuous Ramie-fiber Reinforced Polylactic Acid Composites
CHENG Ping, PENG Yong, WANG Kui*, YAO Song, LIU Zhixiang
Key Laboratory of Traffic Safety on Track of Ministry of Education, Central South University, Changsha 410075, China
下载:  全 文 ( PDF ) ( 15415KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统成型工艺制造的合成纤维增强复合材料逐渐无法满足低成本、快速制造、环境友好等要求。因此,选取连续苎麻纤维增强聚乳酸(PLA)基生物质复合材料,采用原位浸渍3D打印工艺成型不同铺层方式的样件。利用准静态侵彻测试评估了铺层方式、支撑跨距与冲头直径比(跨距比)及增强材料对侵彻性能的影响,并通过背光法实时监测侵彻过程中复合材料的损伤行为。结果表明,连续苎麻纤维的加入使样件的侵彻强度提升了51.5%(单向)和52.9%(正交);正交铺层的复合材料样件与单向铺层相比,吸收的能量和最大侵彻力分别提升了24.9%、13.1%;打印样件的侵彻力和能量吸收能力随着跨距比的降低而显著增加,跨距比为10时的正交铺层复合材料与跨距比为5时相比,强度提升了202.4%。最后通过样件的多尺度失效特征分析及侵彻机理研究,揭示了3D打印生物质复合材料的铺层结构-侵彻性能的关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程平
彭勇
汪馗
姚松
刘志祥
关键词:  连续苎麻纤维  生物质复合材料  3D打印  准静态侵彻    
Abstract: The synthetic fiber reinforced composite materials manufactured by conventional manufacturing processes are gradually unable to meet the requirements of low-cost, rapid manufacturing and environmental friendliness. Therefore, continuous ramie fiber-reinforced polylactic acid (PLA)-based biomass composites with different layups were manufactured by in-situ impregnated 3D printing process. The quasi-static penetration test was conducted to evaluate the effects of layup configuration, support span to indenter diameter ratios (SIRs) and fiber reinforcement on the penetration property of the composites. The damage evolution behavior of the composites during the penetration process was captured in real time by the backlight method. The results show that the addition of continuous ramie fiber increased the penetration strength of the composites by 51.5% (unidirectional) and 52.9% (orthogonal). Compared with the unidirectional layup, the composite with orthogonal layup had an increase of 24.9% and 13.1% in the absorbed energy and maximum penetration force, respectively. The penetration property of the printed sample increased significantly with the decrease of the SIR. The orthogonal layup composite had an increase of 202.4% in strength when the SIR was 10 compared to when the SIR was 5. Finally, the relationship between the layup structure and penetration property of 3D printed composites was revealed through the multiscale analysis of failure features and penetration damage mechanisms.
Key words:  continuous ramie fiber    bio-composite    3D printing    quasi static penetration
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TH16  
  TB33  
基金资助: 国家自然科学基金(51905555);湖湘英才(2018RS3002;2020RC3009)
通讯作者:  * 汪馗,中南大学交通运输工程学院教授、博士研究生导师。2007年武汉理工大学机械专业本科毕业,2013年法国斯特拉斯堡大学力学专业博士毕业后在国外工作4年,2017年回国到中南大学工作至今。目前主要从事轨道交通材料与结构一体化创新设计制造等方面的研究工作。发表论文60余篇,包括Materials & Design、Composites Part A、Industrial Crops and Products、Composite Structures等。kui.wang@csu.edu.cn   
作者简介:  程平,2016年9月、2019年9月分别于安徽科技学院和大连理工大学获得工学学士学位和硕士学位。现为中南大学交通运输工程学院博士研究生,在彭勇教授及汪馗教授的指导下进行研究。目前主要研究领域为复合材料设计及3D打印工艺。
引用本文:    
程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
CHENG Ping, PENG Yong, WANG Kui, YAO Song, LIU Zhixiang. Quasi Static Penetration Property of 3D Printed Continuous Ramie-fiber Reinforced Polylactic Acid Composites. Materials Reports, 2023, 37(1): 22010088-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010088  或          http://www.mater-rep.com/CN/Y2023/V37/I1/22010088
1 Peng Y, Wu Y, Li S, et al. Composites Science Technology, 2020, 199, 108337.
2 Yang K, Zhang G M, Li X Q, et al. Journal of Mechanical Engineering, 2020, 56(23), 193(in Chinese).
杨昆, 张广明, 李晓强, 等. 机械工程学报, 2020, 56(23), 193.
3 Yang Z Z, Kong Z W, Wu G M, et al. Materials Reports, 2021, 35(13), 13177(in Chinese).
杨兆哲, 孔振武, 吴国民, 等. 材料导报, 2021, 35(13), 13177.
4 Yan R, Li H, Li J C, et al. Chinese Journal of Lasers, 2019, 46(3), 138(in Chinese).
鄢然, 李浩, 李军超, 等. 中国激光, 2019, 46(3), 138.
5 Dudek P. Archives of Metallurgy and Materials, 2013, 58(4), 1415.
6 Kabir S, Mathur K, Seyam A. Composite Structures, 2020, 232, 111476.
7 Botelho E C, Figiel L, Rezende M C, et al. Composites Science and Technology, 2003, 63(13), 1843.
8 Blok L G, Longana M L, Yu H, et al. Additive Manufacturing, 2018, 22, 176.
9 Liu T F, Tian X Y, Zhu W J, et al. Journal of Mechanical Engineering, 2019, 55(7), 128(in Chinese).
刘腾飞, 田小永, 朱伟军, 等. 机械工程学报, 2019, 55(7), 128.
10 Tian X, Liu T, Yang C, et al. Composites Part A: Applied Science and Manufacturing, 2016, 88, 198.
11 Wang F, Zhang Z, Ning F, et al. Additive Manufacturing, 2020, 32, 101102.
12 Pertuz A D, Díaz-Cardona S, González-Estrada O A. International Journal of Fatigue, 2020, 130, 105275.
13 Dickson A N, Barry J N, Mcdonnell K A, et al. Additive Manufacturing, 2017, 16, 146.
14 Karoyo A H, Dehabadi L, Alabi W. ACS Omega, 2020, 5, 6113.
15 Wang K, Addiego F, Laachachi A, et al. Composite Structures, 2014, 113, 74.
16 Cheng P, Wang K, Chen X, et al. Industrial Crops and Products, 2021, 170, 113760.
17 Matsuzaki R, Ueda M, Namiki M, et al. Scientific Reports, 2016, 6, 23058.
18 Duigon A L, Barbe A, Guillon E, et al. Materials & Design, 2019, 180, 107884.
19 Duigon A L, Chabaud G, Matsuzaki R, et al. Composites Part B: Engineering, 2020, 203, 108474.
20 Zhou N, Yu B, Sun J, et al. Journal of Biobased Materials and Bioenergy, 2012, 6(5), 564.
21 Li Q, Li Y, Ma H, et al. Composite Communication, 2020, 20, 100343.
22 Bulut M, Erklig A, Yeter E. Composites Part B: Engineering, 2016, 98, 9.
23 Yudhanto A, Wafai H, Lubineau G, et al. Composite Structures, 2018, 186, 324.
24 Wang K, Li S, Wu Y, et al. Composite Structures, 2021, 267, 113854.
25 Lee S W R, Sun C T. Journal of Composite Materials, 1993, 27(3), 251.
26 Pulungan D, Lubineau G, Yudhanto A, et al. International Journal of Solids and Structures, 2017, 117, 177.
27 Erkendirci Ö F, Haque B Z. Composites Part B: Engineering, 2012, 43(8), 3391.
28 Ismail K I, Sultan M T H, Shah A U M, et al. Composites Part B: Engineering, 2019, 163, 455.
29 Fotouhi M, Damghani M, Leong M C, et al. Composite Structures, 2020, 245, 112327.
30 Wagih A, Maimi P, Blanco N, et al. Composites Part A: Applied Science and Manufacturing, 2016, 82, 180.
31 Taghizadeh S A, Liaghat G, Niknejad A, et al. Journal of Composite Materials, 2019, 53(1), 107.
[1] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[2] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[3] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[4] 刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
[5] 李俊生, 李端, 李学超, 高世涛, 王衍飞, 万帆, 刘荣军. 3D打印天线罩技术研究进展[J]. 材料导报, 2022, 36(22): 22050328-10.
[6] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[7] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[8] 许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
[9] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[10] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[11] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[12] 王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
[13] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[14] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[15] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed