Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 22010142-7    https://doi.org/10.11896/cldb.22010142
  金属与金属基复合材料 |
基于机器学习的RAFM钢中子辐照脆化预测模型研究
李孝晨1,2, 丁文艺1, 朱霄汉1,2, 郑明杰1,2,*
1 中国科学院合肥物质科学研究院,合肥 230031
2 中国科学技术大学,合肥 230026
Research on Prediction Model of Neutron Irradiation Embrittlement of RAFM Steels Based on Machine Learning
LI Xiaochen1,2, DING Wenyi1, ZHU Xiaohan1,2, ZHENG Mingjie1,2,*
1 Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2 University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 8265KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 构建低活化铁素体/马氏体(RAFM)钢的中子辐照脆化预测模型对聚变反应堆的安全运行和优化设计新型RAFM钢具有十分重要的意义。本研究基于收集的RAFM钢中子辐照数据集,采用相关性筛选、递归消除方法识别出影响RAFM钢中子辐照条件下韧脆转变温度(DBTT)的关键特征变量。利用筛选的关键特征变量,构建了具有良好预测能力的RAFM钢中子辐照DBTT预测模型。为进一步实现中子辐照条件下韧脆转变温度变化(ΔDBTT)的预测,首先构建了RAFM钢未辐照DBTT预测模型,然后将辐照前后DBTT预测模型相结合构建了RAFM钢中子辐照ΔDBTT预测模型。通过将模型预测的ΔDBTT与文献收集的数据进行对比发现,该模型具备较好的预测能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李孝晨
丁文艺
朱霄汉
郑明杰
关键词:  机器学习  RAFM钢  辐照脆化  韧脆转变温度    
Abstract: Building the neutron irradiation embrittlement prediction model of reduced activation ferritic/martensitic (RAFM) steels is of great significance for the safe operation of the fusion reactor and the optimal design of new RAFM steels. In the present work, based on the collected neutron irradiation dataset of RAFM steels, the key features affecting the ductile-brittle transition temperature (DBTT) of RAFM steels under neutron irradiation are identified by correlation screening and recursive elimination methods. Using the selected key features, the prediction model for DBTT of neutron-irradiated RAFM steels with good prediction ability is constructed. In order to further predict the ductile-brittle transition temperature shift (ΔDBTT) under neutron irradiation, the prediction model for DBTT of un-irradiated RAFM steels is constructed. The prediction model for ΔDBTT of neutron-irradiated RAFM steels is constructed by combining the prediction models before and after irradiation. By comparing the ΔDBTT predicted by the model with the data collected from the related experimental literatures, the results indicate that this prediction model has high precision and reliability.
Key words:  machine learning    RAFM steel    irradiation embrittlement    DBTT
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG113.25  
基金资助: 国家重点研发计划项目(2018YFE0307104);国家自然科学基金(11632001);中国科学院合肥物质科学研究院院长基金国际合作探索项目(2021YZGH05);中国科学院特别交流计划A类(E2AAAI13)
通讯作者:  * 郑明杰,中国科学院合肥物质科学研究院研究员,中科院“百人计划”,博士研究生导师。2003年获山东师范大学物理学学士学位,2006年获北京大学光学硕士学位,2009年获中国香港中文大学物理学博士学位。长期从事先进反应堆材料辐照损伤多尺度模拟与抗辐照材料设计研究。已在Physical Review Letter、Physical Review B、Materials & Design、Journal of Nuclear Materials等重要期刊上发表论文30余篇。mingjie.zheng@inest.cas.cn   
作者简介:  李孝晨,2019年6月于中国科学院大学获得工学硕士学位。现为中国科学技术大学研究生院科学岛分院博士研究生,在郑明杰研究员的指导下进行研究。主要从事基于机器学习的低活化铁素体/马氏体钢及高熵合金研究。
引用本文:    
李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
LI Xiaochen, DING Wenyi, ZHU Xiaohan, ZHENG Mingjie. Research on Prediction Model of Neutron Irradiation Embrittlement of RAFM Steels Based on Machine Learning. Materials Reports, 2023, 37(1): 22010142-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010142  或          http://www.mater-rep.com/CN/Y2023/V37/I1/22010142
1 Tan L, Yang Y, Busby J T. Journal of Nuclear Materials, 2013, 442, S13.
2 Baluc N, Gelles D S, Jitsukawa S, et al. Journal of Nuclear Materials, 2007, 367, 33.
3 Kurtz R J, Alamo A, Lucon E, et al. Journal of Nuclear Materials, 2009, 386, 411.
4 Knitel S, Spaetig P, Yamamoto T, et al. Nuclear Materials and Energy, 2018, 17, 69.
5 Rieth M, Dafferner B, Rohrig H D. Journal of Nuclear Materials, 1996, 233, 351.
6 Morimura T, Kimura A, Matsui H. Journal of Nuclear Materials, 1996, 239(1-3), 118.
7 Wang C, Zhang C, Zhao J, et al. Materials Science and Engineering: A, 2017, 682, 563.
8 Yoshiie T, Xu Q, Sato K, et al. Journal of Nuclear Materials, 2008, 377(1), 132.
9 Jordan M I, Mitchell T M. Science, 2015, 349(6245), 255.
10 Zou C, Li J, Wang W Y, et al. Acta Materialia, 2021, 202, 211.
11 Wang C, Shen C, Cui Q, et al. Journal of Nuclear Materials, 2020, 529, 151823.
12 Kemp R, Cottrell G A, Bhadeshia H, et al. Journal of Nuclear Mate-rials, 2006, 348(3), 311.
13 Jin M, Cao P, Short M P. Journal of Nuclear Materials, 2019, 523, 189.
14 Jiang L, Wang C, Fu H, et al. Journal of Materials Science & Technology, 2022, 98, 33.
15 Klueh R L, Kai J J, Alexander D J. Journal of Nuclear Materials, 1995, 225, 175.
16 Henry J, Averty X, Alamo A. Journal of Nuclear Materials, 2011, 417(1), 99.
17 Schneider H C, Dafferner B, Aktaa J. Journal of Nuclear Materials, 2001, 295(1), 16.
18 Schneider H C, Dafferner B, Aktaa J. Journal of Nuclear Materials, 2003, 321(2), 135.
19 Klueh R L, Alexander D J, Rieth M. Journal of Nuclear Materials, 1999, 273(2), 146.
20 Shiba K, Hishinuma A. Journal of Nuclear Materials, 2000, 283-287, 474.
21 Matijasevic M, Lucon E, Almazouzi A. Journal of Nuclear Materials, 2008, 377(1), 101.
22 Henry J, Averty X, Dai Y, et al. Journal of Nuclear Materials, 2008, 377(1), 80.
23 Materna-Morris E, Lindau R, Moslang A. Materials Science Forum, 2010, 636-637, 631.
24 Morishita K, Sugano R, Wirth B D. Journal of Nuclear Materials, 2003, 323(2), 243.
25 Rieth M, Dafferner B, Rohrig H D. Journal of Nuclear Materials, 1998, 258, 1147.
26 Gaganidze E, Schneider H C, Dafferner B, et al. Journal of Nuclear Materials, 2006, 355(1), 83.
27 Ding Z. Hardening and embrittlement of Fe based alloys irradiated by high energy heavy ions. Ph. D. Thesis, University of Chinese Academy of Sciences(Institute of modern physics, Chinese Academy of Sciences), China, 2020(in Chinese).
丁兆楠. 高能重离子辐照条件下铁基合金硬化及脆化行为研究. 博士学位论文, 中国科学院大学(中国科学院近代物理研究所), 2020.
28 Kang J, Sun K, Mi X, et al. Nuclear Power Engineering, 2020, 41(6), 92(in Chinese).
康靓, 孙凯, 米晓希, 等. 核动力工程, 2020, 41(6), 92.
29 Guo L, Luo F, Yu Y. Dislocation loops in irradiated nuclear materials, National Defense Industry Press, China, 2017, pp. 180(in Chinese).
郭立平, 罗凤凤, 于雁霞. 核材料辐照位错环, 国防工业出版社, 2017, pp. 180.
30 Chen J, Liu C, Liu Y, et al. Journal of Nuclear Materials, 2016, 479, 295.
31 Klueh R L, Alexander D J, Sokolov M A. Journal of Nuclear Materials, 2002, 304(2), 139.
[1] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[2] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[3] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[4] 宋庆功, 常斌斌, 董珊珊, 顾威风, 康建海, 王明超, 刘志锋. 机器学习及其在材料研发中的作用[J]. 材料导报, 2022, 36(1): 20080139-7.
[5] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[6] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[7] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[8] 米晓希, 汤爱涛, 朱雨晨, 康靓, 潘复生. 机器学习技术在材料科学领域中的应用进展[J]. 材料导报, 2021, 35(15): 15115-15124.
[9] 牛程程, 李少波, 胡建军, 但雅波, 曹卓, 李想. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020, 34(23): 23100-23108.
[10] 康靓, 米晓希, 王海莲, 吴璐, 孙凯, 汤爱涛. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21): 21172-21179.
[11] 王占雷, 向鑫, 闫晶, 郭亚昆, 朱开贵, 陈长安. 氘、氚与RAFM钢相容性研究进展[J]. 材料导报, 2019, 33(11): 1782-1786.
[12] 周金华, 申勇峰. 低活化铁素体/马氏体耐热钢中MX型碳氮化物强化研究进展[J]. 材料导报, 2019, 33(11): 1793-1800.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed