Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21172-21179    https://doi.org/10.11896/cldb.19080073
  金属与金属基复合材料 |
人工神经网络在材料科学中的研究进展
康靓1, 米晓希1, 王海莲1, 吴璐2, 孙凯2, 汤爱涛1,*
1 重庆大学材料科学与工程学院,重庆 400045;
2 中国核动力研究设计院,成都 610005
Research Progress of Artificial Neural Networks in Material Science
KANG Jing1, MI Xiaoxi1, WANG Hailian1, WU Lu2, SUN Kai2, TANG Aitao1,
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2 Nuclear Power Institute of China, Chengdu 610005, China
下载:  全 文 ( PDF ) ( 5907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统的“试错”型材料研究方法存在周期长、成本高和偶然性大等不足,已经不能满足现代材料研发的需求,提高研发针对性、缩短材料研发周期、降低材料研发成本成为全世界的研究热点。随着数据量的不断累积以及计算机技术的不断发展,数据密集型科学逐渐成为科学研究的第四范式。从大量数据中寻找能反映材料本征的“基因”,是材料现行的研究趋势。人工神经网络方法因具备自学习、联想存储以及高速寻找优化解的能力的优点而被广泛应用于材料科学领域。研究者利用人工神经网络等机器学习模型对材料的试验或理论计算数据进行挖掘,在专家经验和理论指导下转化为可靠的知识并能够辅助智能决策,从而建立材料从微观结构到宏观性能间的一一映射关系。
早期,人工神经网络主要被用于寻求材料的宏观参数与材料宏观性能之间的关系,如材料的成分设计,加工过程的工艺参数优化,以及寻找影响材料使用性能的环境参数;人工神经网络通过对第一性原理计算结果进行学习,被用于描述原子尺度下体系之间的作用关系,以此实现计算速度与精度的平衡;而卷积神经网络等深度神经网络方法在图像处理上的独到优势,使得其在材料表征领域得到了更广泛的应用,如SEM、TEM中微结构识别与重构。借助人工神经网络等方法,实现材料微观、介观到宏观性能之间跨尺度的联系,是实现材料设计这一终极目标的可能途径。
本文回顾了人工神经网络的发展历史,对目前材料领域应用最为广泛的BP神经网络与卷积神经网络原理进行了阐释,综述了人工神经网络在材料宏观性能、计算模拟、材料表征等领域的应用,探讨了人工神经网络在材料领域应用存在的不足,最后对未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康靓
米晓希
王海莲
吴璐
孙凯
汤爱涛
关键词:  人工神经网络  BP网络  性能预测  机器学习  卷积网络    
Abstract: The traditional “trial and error” material research methods have the disadvantages of long cycle, high cost and great contingency, which can't meet the needs of modern material research and development. It has become a research hotspot all over the world to improve the pertinence of research and development, shorten the cycle of material research and development, and reduce the cost of material research and development. With the continuous accumulation of data and the continuous development of computer technology, data intensive material scientific discovery has gradually become the fourth paradigm of scientific research. It is the current research trend of materials to find the “gene” that can reflect the material's intrinsic characteristics from a large number of data. The artificial neural network method is widely used in the field of materials science because of its advantages of self-learning, associative storage and high-speed search for optimal solution. Researchers use machine learning models such as artificial neural network to mine the experimental or theoretical calculation data of materials under the guidance of expert experience and theory, it can be transformed into reliable knowledge and can assist intelligent decision-making, so as to establish a one-to-one mapping relationship between microstructure and macro performance of materials.
In the early days, artificial neural network was mainly used to find the relationship between the macro parameters of materials and the macro performance of materials, such as the composition design of materials, the optimization of process parameters, and the search of environmental para-meters that affect the performance of materials. With the development of computer technology and the rise of computer simulation, artificial neural network was used to learn the calculation results of the first principle. It is used to describe the interaction between the systems at the atomic scale, so as to achieve the balance between the calculation speed and accuracy. The convolution neural network methods, such as a deep neural network method, has unique advantages in image processing, which makes it more widely used in the field of material characterization, such as microstructure identification and reconstruction in SEM and TEM. With the help of artificial neural network and other methods, it is a possible way to realize the ultimate goal of material design to realize the cross scale relationship between micro, meso and macro properties of materials.
This paper reviews the development history of artificial neural network, explains the principle of BP neural network and convolution neural network which are widely used in the field of materials at present, summarizes the application of artificial neural network in the field of material macro performance, calculation simulation, material characterization, etc., probes into the shortcomings of the application of artificial neural network in the field of materials, and finally discusses the development trend of artificial neural network in materials research.
Key words:  artificial neural network    BP neural network (BP-NN)    performance prediction    machine learning    convolutional network
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TP183  
  TB3  
基金资助: 国家重点研发计划项目(2016YFB0301100);重庆市自然科学基金(cstc2017jcyjBX0040); 国家自然科学基金(51531002);国防基础科研计划(JCKY2017201C016)
作者简介:  康靓,硕士研究生,2017年毕业于重庆大学获得学士学位。现为重庆大学在读硕士研究生,在汤爱涛教授的指导下进行研究,主要研究人工神经网络在核压力容器材料以及镁合金中的应用。
汤爱涛,博士,教授,博士研究生导师,国家镁合金材料工程技术研究中心骨干研究人员。以镁合金、铝合金和复合材料为重点,主要从事材料数据库、材料的计算模拟以及高性能材料的研究。1984年本科毕业于重庆大学冶金系,2004年博士毕业于重庆大学材料学院,先后担任了五门本科课程和1门研究生课程的教学工作,是“计算机在材料科学与工程中的应用课程”的骨干教师。出版过教材和专著,负责和主研过多项国家级科研项目。作为持证人获得国家科技进步二等奖一项、教育部科技进步一等奖一项、中国高校科技进步一等奖一项、重庆市科技进步三等奖一项,同时获得多项国家授权发明专利,发表重要论文60多篇。
引用本文:    
康靓, 米晓希, 王海莲, 吴璐, 孙凯, 汤爱涛. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21): 21172-21179.
KANG Jing, MI Xiaoxi, WANG Hailian, WU Lu, SUN Kai, TANG Aitao1,. Research Progress of Artificial Neural Networks in Material Science. Materials Reports, 2020, 34(21): 21172-21179.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080073  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21172
[1] Wang H, Xiang Y, Xiang X D, et al.Science & Technology Review, 2015, 33(10), 13(in Chinese).
汪洪, 向勇, 项晓东, 等.科技导报, 2015, 33 (10), 13.
[2] He P, Lin P P.Materials Review A: Review Papers, 2019, 33(1), 156(in Chinese).
何鹏, 林盼盼.材料导报:综述篇, 2019, 33(1), 156
[3] Himanen L, Geurts A, Foster A S, et al.Advanced Science, DOI: 10.1002/advs.201900808.
[4] Agrawal A, Choudhary A.APL Materials, DOI: 10.1063/1.4946894.
[5] Li B, Du Y, et al.Materials China, 2018, 37(7), 264(in Chinese)
李波, 杜勇, 等.中国材料进展, 2018, 37(7), 264
[6] Bird C L, Frey J G.Chemical Socical Reviews, 2013, 42(16), 6754.
[7] Hosni M, Abnane I, Idri A, et al.Computer Methods and Programs in Biomedicine, 2019, 177, 89.
[8] Savas S, Topaloglu N, Kazci O, et al.Journal of Medical Systems, DOI: 10.1007/s10916-019-1421-3.
[9] Mater A C, Coote M L.Journal of Chemical Information and Modeling, 2019, 59(6), 2545.
[10] Ranade R, Alqahtani S, Farooq A, et al. Fuel, 2019, 251, 276.
[11] Mehrpouya M, Gisario A, Huang H, et al.Optics and Laser Technology, 2019, 118, 159.
[12] Chen G, Wang H Y, Bezold A, et al. Composite Structures, 2019, 223(SEP), 110.951.1.
[13] Ramachandra S, Durodola J F, Fellows N A, et al.International Journal of Fatigue, 2019, 126, 112.
[14] Gubaev K, Podryabinkin E V, Hart G L W, et al.Computational Mate-rials Science, 2019, 156, 148.
[15] Jin H P, Yang W Y, Yan L.Proceedings of the Estonian Academy of Sciences, 2012, 61(4), 296.
[16] Maier W F, Stowe K, Sieg S.Angewandte Chemie Internation Edition, 2007, 46(32), 6016.
[17] Huang N C. Application of artificial neural network in rubber damper design. Master's Thesis, Qingdao University of Science and Technology, China, 2018(in Chinese).
黄年昌. 人工神经网络技术在橡胶减振器设计中的应用研究. 硕士学位论文, 青岛科技大学, 2018.
[18] Mcculloch W S, Pitts W. Bulletin of Mathematical Biology, 1990, 52(1-2), 99.
[19] Han M.Artificial neural network foundation, Dalian University of Techno-logy Press, China, 2014(in Chinese).
韩敏.人工神经网络基础, 大连理工大学出版社, 2014.
[20] Dai Y W, Lei Z Y.Computer and Modernization, 2016(11), 67(in Chinese).
戴永伟, 雷志勇.计算机与现代化, 2016(11), 67.
[21] Zhang Y Z.Cognitive Systems Research, 2019, 57, 228.
[22] Chen Y, Ma H W, Dong M.Insight, 2018, 60(4), 194.
[23] Majumder H, Maity K.Applied Soft Computing, 2018, 70, 665.
[24] Yazdanmehr M, Anijdan S H M, Bahrami A.Computational Materials Science, 2009, 44(4), 1218.
[25] Zhu H W. Research of the nonlinear identification algorithm for the thermal process system. Master's Thesis, North China Electric Power University, China, 2018(in Chinese).
朱洪伟. 热工系统的非线性辨识算法研究. 硕士学位论文, 华北电力大学, 2018.
[26] Armaghani D J, Shoib R S N S B, Faizi K, et al.Neural Computing & Applications, 2017, 28(2), 391.
[27] Hinton G E, Salakhutdinov R R.Science, 2006, 313(5786), 504.
[28] Zhou Z H. Machine learning, Tsinghua University Press, China, 2016(in Chinese).
周志华. 机器学习, 清华大学出版社, 2016.
[29] Liu Y, Zhou X L, Hu Z K, et al.China Forestry Science and Technology, 2019, 4(1), 115(in Chinese).
刘英, 周晓林, 胡忠康, 等.林业工程学报, 2019, 4(1), 115.
[30] Tung Tran, Ramakanth Kavuluru. Journal of Biomedical Informatics, 2019, 75, S138.
[31] Amin-Naji M, Aghagolzadeh A, Ezoji M.Information Fusion, 2019, 51, 201.
[32] Liu B, Tang A T, et al.Materials Review B:Research Papers, 2011, 28(9), 117(in Chinese).
刘彬, 汤爱涛, 潘复生,等.材料导报:研究篇, 2011, 28(9), 117.
[33] Hu X B, Wang J C, Wang Y Y, et al.Computational Materials Science, 2018, 155, 331.
[34] Paul S, Bhattacharjee S.International Journal of Modeling Simulation and Scientific Computing, 2018, 9(6), S1.
[35] Maleki E, Unal O, Kashyzadeh K R.International Journal of Fatigue, 2018, 116(S1), 48.
[36] Chu L H, Wang L, Li H Y, et al.Journal of Netshape Forming Enginee-ring, 2007, 9(6), 125(in Chinese).
储林华, 王练, 李恒羽, 等.精密成形工程, 2007, 9(6), 125.
[37] Patowari P K, Saha P, Mishra P K.International Journal of Advanced Manufacturing Technology, 2010, 51(5-8), 627.
[38] Li C, Kui B, Wang J W, et al.Journal of Netshape Forming Engineering, 2007, 9(5), 134(in Chinese).
李超, 槐宝, 王继伟, 等.精密成形工程, 2007, 9(5), 134.
[39] Hua L Y, Xia Q X, Yu G F, et al.Journal of Netshape Forming Enginee-ring, 2007, 9(1),103(in Chinese).
华路延, 夏琴香,俞高峰, 等.精密成形工程, 2007, 9(1), 103.
[40] Millán-Ocampo D, Arianna P B, González-Rodríguez J, et al.Entropy, 2018, 20(6), 409.
[41] Thankachan T, Prakash K S, Pleass C D, et al.International Journal of Hydrogen Energy, 2017, 42(47), 28612.
[42] Kemp R, Cottrell G A, Bhadeshia H K D H, et al. Journal of Nuclear Materials,2006, 348(3), 311.
[43] Mathew J, Parfitt D, Wilford K, et al. Journal of Nuclear Materials, 2018, 502(S1), 311.
[44] Wu X J, Yang J L.Bulletin of National Natural Science Foundation of China, 2018, 32(1), 85 ( in Chinese).
武晓君, 杨金龙.中国科学基金, 2018, 32(1), 85.
[45] Deng J K. Atomistic simulations of aging effects in shape memory alloys. Doctor's Thesis, Xi'an Jiaotong Univeisity, China, 2011.
邓俊楷. 形状记忆合金中时效效应的原子模拟. 博士学位论文, 西安交通大学, 2011.
[46] Car R, Parrinello M.Physical Review Letters, 1985, 55(22), 2471.
[47] Malinov S, Sha W. JOM, 2005, 57(11), 54.
[48] Seko A, Takahashi A, Tanaka I.Physical Review B, DOI:10.1103/PhysRevB.92.054113.
[49] Ye W, Chen C, Wang Z, et al. Nature Communications, 2018, 9(1), 3800.
[50] Zong H X, Pilania G, Ding X D, et al.Npj Computational Materials, DOI: 10.1038/s41524-018-0103-x.
[51] Terentyev D, Bonny G, Castin N, et al.Journal of Nuclear Materials, 2011, 409(2), 167.
[52] Pascuet M I, Castin N, Becquart C S, et al.Journal of Nuclear Materials, 2011, 412(1), 106.
[53] Castin N, Messina L, Domain C, et al.Physical Review B, DOI: 10.1103/PhysRevB.95.214117.
[54] Castin N, Pascuet M I, Messina L, et al.Computational Materials Science, 2018, 148, 116.
[55] Botu V, Batra R, Chapman J, et al.Journal of Physical Chemistry C, 2017, 121(1), 511.
[56] Pun G P P, Batra R, Ramprasad R, et al.Nature Communications, 2019, 10(1), 2339.
[57] Wu W, Sun Q.Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(10), 58(in Chinese).
吴炜, 孙强.中国科学:物理学力学天文学, 2018, 48(10), 58.
[58] Hautier G, Fischer C C, Jain A, et al. Chemistry of Materials, 2010, 22(12), 3762.
[59] Park W B, Chung J, Jung J, et al.IUCrJ, 2017, 4, 486.
[60] Oviedo F, Ren Z, Sun S, et al.Npj Computational Materials, DOI: 10.1038/s41524-019-0196-x.
[61] Vecsei P M, Choo K, Chang J, et al.Physical Review B, DOI: 10.1103/PhysRevB.99.245120.
[62] Chen L L, Wei B, et al.High Power Laser and Particle Beams, 2018, 30(9), 117(in Chinese).
陈乐林, 魏彪, 等.强激光与粒子束, 2018, 30(9), 117.
[63] De AlbuquerqueV H C, Cortez P C, De Alexandria A R, et al. Nondestructive Testing and Evaluation, 2008, 23(4), 273.
[64] Iwahori Y, Kawanaka H, Fukui S, et al.Journal of Intelligent Manufacturing, 2005, 16(6), 715.
[65] Coquelin L, Fischer N, Feltin N, et al.Materials Research Express, DOI: 10.1088/2053-1591/ab1bb4.
[66] Barry T J, Kesharaju M, Nagarajah C R, et al.Journal of Composite Materials, 2016, 50(7), 861.
[67] Madsen J, Liu P, Kling J, et al.Advanced Theory and Simulations, DOI: 10.1002/adts.201800037.
[68] Chen F-C, Jahanshahi M R.Ieee Transactions on Industrial Electronics, 2018, 65(5), 4392.
[69] Paulic M, Mocnik D, Ficko M, et al.Tehnicki Vjesnik-Technical Gazette, 2015, 22(6), 1419.
[1] 王仕发,李丹明,肖玉华,杨震春,李居平,郝 剑,杨长青. 用于空间辐射环境探测的金刚石探测器研究综述[J]. 《材料导报》期刊社, 2018, 32(9): 1459-1468.
[2] 周新星,吴少鹏,张翛,刘全涛,徐松,王帅. 基于分子尺度的沥青材料设计[J]. 《材料导报》期刊社, 2018, 32(3): 483-495.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed