Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21166-21171    https://doi.org/10.11896/cldb.19090006
  金属与金属基复合材料 |
适于3D打印的金属及陶瓷粉末表面包覆研究进展
王行1, 郭子傲1, 仪登豪1, 冯英豪1, 张锦芳1, 李晓峰1,2,*, 刘斌1,*, 白培康1
1 中北大学材料科学与工程学院,太原030051;
2 河南黄河旋风股份有限公司,长葛 461500
Research Progress on Surface Coating of Metal/Ceramic Powder Suitable for 3D Printing
WANG Hang1, GUO Zi'ao1, YI Denghao1, FENG Yinghao1, ZHANG Jingfang1, LI Xiaofeng1,2,*, LIU Bin1,*, BAI Peikang1
1 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
2 Henan Huanghe Whirlwind Co., Ltd., Changge 461500, China
下载:  全 文 ( PDF ) ( 4480KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 3D打印技术自出现以来,受到人们的普遍关注。其成型材料主要以粉末为主,粉末材料的性能对成形件有显著的影响。在粉末3D打印的过程中,常常由于粉末的流动性差、收缩系数大等问题,极易出现成形件组织不均匀、开裂、孔洞等缺陷,这都与3D打印的粉末材料性能有着十分密切的关系。
由于3D打印所需粉末材料具有比表面积大、吸附团聚效应强、表面活性大等特点,很多打印粉末材料如果不进行预处理,极易在3D打印中出现分散不均匀的现象,这对打印成形件质量会造成明显的恶化。对打印用的粉末进行表面改性处理,可以有效地提高成形过程的工艺性能,从而改善3D打印结构零件的综合性能。
常见的粉末改性手段有很多,粉末表面包覆使得材料拥有良好的浸湿性、流动性、耐腐蚀性等,还可以使材料的“壳”和“核”的性能得到更好的发挥。对3D打印技术所用的金属或陶瓷粉末表面进行包覆,可以在粉末材料制备过程中,按需要对粉末表面进行包覆处理,使其能够更好地展现材料的优异性能。
本文结合主要的金属/陶瓷粉末包覆方法,并对当前关于3D打印的金属/陶瓷基粉末包覆常规方法进行归纳分析,总结了3D打印过程中利用陶瓷/金属/高分子表面材料来包覆金属或陶瓷基的粉末材料,为进一步探索关于3D打印的金属/陶瓷粉末的研发提供参考和启发。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王行
郭子傲
仪登豪
冯英豪
张锦芳
李晓峰
刘斌
白培康
关键词:  3D打印  粉末包覆  金属  陶瓷  高分子    
Abstract: Since its appearance, 3D printing technology has received widespread attention. The molding material is mainly powder, and the properties of the powder material have a great influence on the formed parts. In the process of powder 3D printing, due to problems such as poor fluidity of the powder and large shrinkage coefficient, it is easy to cause defects such as uneven microstructure, cracking, holes, etc. in the process of 3D printing, which are related to 3D printed powder materials. The performance is very closely related.
Since the powder material required for 3D printing has the characteristics of large specific surface area, stong adsorption agglomeration effect, and large surface activity, many printing powder materials are prone to dispersion unevenness in 3D printing if they are not pretreated, which is suitable for printing. The quality of the parts will cause a significant deterioration. Modification of the surface of the printed powder can effectively improve the printing process performance of the 3D printed material, and also has a good overall performance improvement for the 3D printed structural parts.
There are many methods for common powder modification methods, The surface coating of the powder makes the material have good wettability, fluidity, corrosion resistance, etc., and can also make the material “shell” and “core” performance to better play the material potential. For the surface of the metal or ceramic powder used in 3D printing technology, the surface of the powder can be coated as needed during the preparation of the powder material, so that the excellent performance of the material can be better exhibited.
This paper combines the main metal/ceramic powder coating methods, and makes an inductive analysis of the current metal/ceramic-based powder coating conventional methods for 3D printing, summarizing the ceramic/metal/polymer surface materials in the 3D printing process. Coa-ting metal or ceramic-based powder materials provides reference and inspiration for further exploration of metal/ceramic powder preparation and development for 3D printing.
Key words:  3D printing    powder coating    metal    ceramic    macromolecule
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51804280);山西省自然科学基金(201701D221086;201801D221146);山西省科技重大专项(20181101009);山西省教育厅科技创新项目(201802076);山西省回国留学人员科研资助项目(2017-095);山西省国际合作项目(201603D421024);中北大学青年学术带头人支持计划(QX201802)
作者简介:  王行,2018年7月毕业于郑州科技学院,获得工学学士学位。现为中北大学材料科学与工程学院硕士研究生,在李晓峰副教授的指导下进行研究。目前主要研究领域为激光选区熔化(SLM)制备硬质合金材料。
李晓峰,中北大学材料科学与工程学院副教授、硕士研究生导师。2009年6月本科毕业于中南大学粉体材料科学与工程学院,2016年6月在中南大学粉末冶金国家重点实验室取得博士学位。主要从事粉末冶金、增材制造、金属基复合材料的设计及开发的研究工作。
引用本文:    
王行, 郭子傲, 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 白培康. 适于3D打印的金属及陶瓷粉末表面包覆研究进展[J]. 材料导报, 2020, 34(21): 21166-21171.
WANG Hang, GUO Zi'ao, YI Denghao, FENG Yinghao, ZHANG Jingfang, LI Xiaofeng, LIU Bin, BAI Peikang. Research Progress on Surface Coating of Metal/Ceramic Powder Suitable for 3D Printing. Materials Reports, 2020, 34(21): 21166-21171.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090006  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21166
[1] Liu Wen, Xu Shuqiong. In: Proceedings of the International Conference on Advanced Material Engineering. Guangzhou, China, 2015, pp. 506.
[2] Ma W L, Tao F H, Jia C Z, et al. Applied Mechanics & Materials, 2014, 644(60), 650.
[3] Duda T, Raghavan L V. IFAC-Papers on Line, 2016, 49(29), 103.
[4] Xin W, Man J, Zhou Z, et al. Composites Part B Engineering, 2017, 110(442), 58.
[5] Ngo T D, Kashani A, Imbalzano G, et al. Composites Part B Enginee-ring, 2018, 143, 347.
[6] Chen Y H, Zhou K G, Li X B. China's Manganese Industry, 2006, 24(3),36 (in Chinese).
陈一恒, 周康根, 李晓波.中国锰业, 2006, 24(3), 36.
[7] Liu Z, Huang H, Deng S, et al. Inorganic Chemicals Industry, 2006,38(1),13.
[8] Zhang S X, Li J B, Zhang B, et al. Chemistry Bulletin, 2001, 64(2),71 (in Chinese).
张淑霞, 李建保, 张波,等. 化学通报, 2001, 64(2),71.
[9] Xu B S, Wang H D, Dong S Y, et al. Jiangsu Machine Building & Automation, 2004, 25(5), 8.
[10] Jin Y Z, Wu W. Chinese Journal of Rare Metals, 2004, 28(1), 262 (in Chinese).
金永中, 吴卫.稀有金属, 2004, 28(1), 262.
[11] Liu D F, Zheng Y Y, Huang H M. Journal of Materials Engineering, 2008, 10, 342.
[12] Meier H, Haberland C. Materialwissenschaft Und Werkstofftechnik, 2010, 39(9), 665.
[13] Gibsn I, Shi D. Rapid Prototyping Journal, 1997, 3(4), 129.
[14] Vilar R. Materials Science Forum, 1999, 301(24), 12.
[15] Lemke J N, Simonelli M, Garibaldi M, et al. Journal of Alloys & Compounds, 2017, 722(293), 301.
[16] Garibaldi M, Ashcroft I, Simonelli M, et al. Acta Materialia, 2016, 110(207), 16.
[17] Garibaldi M, Ashcroft I, Lemke J N, et al. Scripta Materialia, 2018, 142(1), 121.
[18] Kang N, El M M, Guittonneau F, et al. Applied Surface Science, 2018, 455, 736.
[19] Sun J G. Study on the preparation of nickel-coated copper composite powder by electroless plating. Master's Thesis, Lanzhou University of Technology, China, 2013 (in Chinese).
孙建国. 化学镀法制备镍包覆铜复合粉末的工艺研究. 硕士学位论文, 兰州理工大学, 2013.
[20] Révész , Takacs L. Surface & Coatings Technology, 2009, 203(20), 3026.
[21] Farahbakhsh I, Mashimo T. Surface Engineering, 2018, 1, 13.
[22] Kuang Y Z, Zhang B, Ma F, et al. Chinese Journal of Rare Metals, 2019(8), 838(in Chinese).
匡益之, 张彬, 马飞,等. 稀有金属, 2019(8), 838.
[23] Davydova A, Dmashenkov A, Sova A, et al. Journal of Materials Proce-ssing Technology, 2016, 229(361), 6.
[24] Yu J. Electroless plating of Cr3C2-Ni powder and its application in laser cladding. Master's Thesis, Zhejiang University, China, 2010 (in Chinese).
俞佳. Cr3C2-Ni粉末化学镀及其在激光熔覆中的应用. 硕士学位论文, 浙江大学, 2010.
[25] Wang R, Ma H B, Wei D Q, et al. Special-cast and Non-ferrous Alloys, 2015, 35(11), 1209 (in Chinese).
王荣, 马海波, 魏德强,等. 特种铸造及有色合金, 2015, 35(11), 1209.
[26] Gao H J, Wang Y Z, Li F P, et al. Electroplating & Finishing, 2007(12), 18 (in Chinese).
高海军, 王引真, 李方坡,等. 电镀与涂饰, 2007(12), 18.
[27] Gao H J, Wang Y Z, Li F B, et al. China Surface Engineering, 2007, 20(4), 47 (in Chinese).
高海军, 王引真, 李方坡,等. 中国表面工程, 2007, 20(4), 47.
[28] Zhong H. Preparation of core-shell structure cobalt-coated tungsten carbide composite powder by intermittent electrode position. Master's Thesis, Hunan University, China, 2011 (in Chinese).
钟欢. 核-壳结构钴包碳化钨复合粉体的间歇电沉积制备研究. 硕士学位论文, 湖南大学, 2016.
[29] Ren J S, Li B, Wang J, et al. Electronic Components & Materials, 2018, 37(1), 51 (in Chinese).
任劲松, 李勃, 王进,等. 电子元件与材料, 2018, 37(1), 51.
[30] Ahn J H, Lee J K, Kim D W, et al. Materials Research Bulletin, 2008, 43(8-9), 2266.
[31] Matik U. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 33(4), 1603.
[32] Lekatou A, Sioulas D, Karantzalis A E, et al. Surface & Coatings Technology, 2015, 276(539), 56.
[33] Jankovi c' N Z, Slijep c'evic' M Z,C'antrak S, et al. In: Proceedings of the Multidisciplinary Engineering Design Optimization. Belgrade, Serbia, 2016.
[34] Melchels F P W, Feijen J, Grijpma D W. Biomaterials, 2010, 31(24), 6121.
[35] Wang Y Q, Shen J X, Wu H Q. Journal of Aeronautical Materials, 2016, 52(10), 1239 (in Chinese).
王延庆, 沈竞兴, 吴海全. 航空材料学报, 2016, 52(10), 1239.
[36] Tata K, Fadel G, Bagchi A, et al. Rapid Prototyping Journal, 1998, 4(4), 151.
[37] Song S Y, Min S P, Lee J W, et al. Materials Chemistry & Physics, 2018, 216, 213.
[38] Romero-Romero M, Domínguez-Ríos C, Torres-Sánchez R, et al. Surface & Coatings Technology, 2017, 315(Complete), 181.
[39] Proa-Flores P M, Drew R A L. Advanced Engineering Materials, 2010, 10(9), 830.
[40] Zhuang Y, Wang S, Jia D, et al. Materials Science & Engineering A, 2015, 626(27), 33.
[41] Li X, Gao M, Zhang L. Journal of Alloys & Compounds, 2016, 669(55), 9.
[42] He Y W. Study on microstructure and properties of organic coating alloy powder and its laser formed parts. Master's Thesis, University of South China, China, 2016 (in Chinese).
贺沅玮. 有机物包覆合金粉末及其激光成形件组织与性能研究. 硕士学位论文, 南华大学, 2016.
[43] Seong M R, Kwon J, Lee G Y, et al. Applied Surface Science, 2010, 256(8), 2332.
[44] Liu G P, Guo X D, Duan H Z, et al. The Chinese Journal of Nonferrous Metals, 2007, 17(12), 1999 (in Chinese).
刘冠鹏, 郭效德, 段红珍, 等. 中国有色金属学报, 2007, 17(12), 1999.
[45] Chen A N, Ga F, Li M, et al. Ceramics International, 2019, 45(12), 15538.
[46] Beaman J J, Deckard C R. U.S. patent, US19900547857. 1990.
[47] Li X, Zhi C, Zhang Z, et al. Applied Surface Science, 2006, 252(22), 7856.
[48] Shiron H, Amano Y, Kawaguchi M, et al. Journal of Colloid & Interface Science, 2001, 239(2), 555.
[49] Mallakpour S, Barati A. Progress in Organic Coatings, 2011, 71(4), 391.
[50] Yun J S, Park T W, Jeong Y H, et al. Applied Physics A, 2016, 122(6), 629.
[51] Thakur V K, Thakur M K, Gupta R K. Carbohydrate Polymers, 2014, 104(1), 87.
[52] Thakur M K, Gupta R K, Thakur V K. Carbohydrate Polymers, 2014, 111(1), 849.
[53] Thakur V K, Thakur M K, Gupta R K. Carbohydrate Polymers, 2013, 98(1), 820.
[54] Thakur V K, Thakur M K, Gupta R K. International Journal of Biological Macromolecules, 2013, 61(10), 121.
[55] Thakur V K, Thakur M K, Gupta R K. Carbohydrate Polymers, 2013, 97(1), 18.
[56] Thakur V K, Thakur M K, Gupta R K. International Journal of Biological Macromolecules, 2013, 62(11), 44.
[57] Gupta R K, Ying G, Srinivasan M P, et al. Journal of Physical Chemistry B, 2012, 116(32), 9784.
[58] Gupta R K, Kusuma D Y, Lee P S, et al. ACS Applied Materials & Interfaces, 2011, 3(12), 4619.
[59] Yecheng He B L, Zou H. In: Proceedings of the ACS Symposium Series. Guangxi, China, 2014, pp.1183.
[60] Song S Y, Park M S, Lee J W, et al. Materials Chemistry and Physics, 2018, 216(446), 53.
[1] 荣雁. 新型绝热材料在稠油注蒸汽管线保温中的应用[J]. 材料导报, 2020, 34(Z1): 173-177.
[2] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[3] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[4] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[5] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[6] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[7] 赵僧群, 李旭蕊, 韩莎莎, 李丽. 三种金属有机框架对苯达莫司汀的载药研究[J]. 材料导报, 2020, 34(Z1): 523-526.
[8] 张楠. P(AN-co-DAC)/mt-PSA共混物的吸湿性研究[J]. 材料导报, 2020, 34(Z1): 548-551.
[9] 周立生, 刘剑侠, 吴淑新, 陈国辉, 杨士山, 杨立波. 类玻璃高分子材料的研究进展[J]. 材料导报, 2020, 34(Z1): 585-591.
[10] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[13] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[14] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[15] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed