Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 483-495    https://doi.org/10.11896/j.issn.1005-023X.2018.03.020
     材料综述 |
基于分子尺度的沥青材料设计
周新星1,吴少鹏2,张翛1,刘全涛2,徐松3,王帅1
1 山西省交通科学研究院黄土地区公路建设与养护技术交通行业重点实验室,太原 030006
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
3 福州大学土木工程学院,福州 350103
Molecular-scale Design of Asphalt Materials
Xinxing ZHOU1,Shaopeng WU2,Xiao ZHANG1,Quantao LIU2,Song XU3,Shuai WANG1
1 Key Laboratory of Highway Construction and Maintenance in Loess Region, Shanxi Transportation Research Institute,Taiyuan 030006
2 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology,Wuhan 430070
3 College of Civil Engineering, Fuzhou University, Fuzhou 350103
下载:  全 文 ( PDF ) ( 2178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

基于分子尺度的沥青材料设计是指利用多尺度分子模拟预测沥青材料的性能,指导制备符合高性能要求的沥青材料。分子尺度的设计方法主要有量子力学方法、蒙特卡洛方法和分子动力学方法。总结了沥青质模型、沥青模型、量子力学和分子模拟在沥青材料性能预测和设计中的应用,重点介绍了改性沥青材料常用物理力学性质的模拟计算方法及相关研究成果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周新星
吴少鹏
张翛
刘全涛
徐松
王帅
关键词:  分子尺度  沥青  材料设计  分子模型  性能预测    
Abstract: 

The cardinal issue of molecular-scale design of asphalt materials is the properties prediction via multi-scaled molecular simulation which consequently provide guidance for developing modified asphalt with certain performance. Main methodologies of the molecular-scale design include quantum-mechanical methods, Monte Carlo methods, and molecular dynamics simulations. This review provides a conclusion on the material design, asphaltene models, bitumen models, and the application of quantum mechanics and molecular simulation. It focuses on simulation and calculation methods for the commonly used physical and mechanical properties of modified asphalt materials, and the relevant researches.

Key words:  molecular scale    asphalt    materials design    molecular model    properties prediction
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TU528.42  
基金资助: 国家自然科学基金(51308329);山西省重点研发基金-国际合作项目(201603D421027);山西省交通运输厅科技项目(2017-1-16)
作者简介:  作者简介:周新星:男,1990年生,硕士,助理工程师,研究方向为沥青基道路材料 E-mail: zxx09432338@whut.edu.cn
引用本文:    
周新星,吴少鹏,张翛,刘全涛,徐松,王帅. 基于分子尺度的沥青材料设计[J]. 《材料导报》期刊社, 2018, 32(3): 483-495.
Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials. Materials Reports, 2018, 32(3): 483-495.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.020  或          https://www.mater-rep.com/CN/Y2018/V32/I3/483
图1  沥青质模型:(a)Hierarchical 模型;(b)Groenzin和Mullins模型;(c)改进的Yen模型;(d)沥青质纳米尺度模型
图2  Rogel的12个沥青质模型
图3  沥青质代表性平均分子结构模型
图4  (a)Kuznicki的四个沥青质模型;(b)Artok 沥青质模型;(c)Derek沥青质模型;(d)Khafji沥青质模型
图5  Jennings提出的八种沥青模型
图6  (a)沥青三维非晶态晶胞模型;(b)线性SBS改性沥青三维模型
图7  沥青四组分模型:(a)沥青质;(b)环烷芳香分;(c)极性芳香分;(d)饱和分
图8  (a)实验和蒙特卡洛模拟下密度与温度的关系曲线;(b)沥青质1(C64H52S2)和沥青质2(C72H98S)的密度与温度的关系曲线
图9  沥青、碳纳米管改性沥青及石墨烯改性沥青的(a)密度-温度曲线和(b)能量-温度曲线[61](电子版为彩图)
Type Etotal Esurface Easphalt Einterface
Basalt concrete
Steel slag concrete
Andesite concrete
34 635.8
30 811
31 107.8
-214.3
-457.5
-225.2
17 135.8
115 362
15 610.4
-17 714.3
84 093.5
-15 722.6
表1  沥青混合料的界面粘附能(kJ/mol)
Temperature/K D /(10-8 m·s-2) Relax time/ps
255.15
298.15
333.15
408.15
436.15
3.292
4.608
5.553
5.980
6.247
2.991
0.479
0.341
0.291
0.162
表2  不同温度下沥青质的扩散系数和松弛时间
图10  沥青质相互排列的三种模式
δ1 δs δexp
Asphaltene 18.4314 20—22
Toluene 18.4044 18.3
Benzene 18.8078 18.7
Pyridine 21.2766 21.7
n-pentane 14.3731 14.4
n-hexane 14.9379 14.9
n-heptane 15.3088 15.3
δ2 δD δP δH
Crude oil 17.7 4 0.6
Asphalt 18.4 3.9 3.6
Asphaltene 19.6 3.4 4.4
Maltene 17.7 5.8 2.5
Polystyrene 18.5 4.5 2.9
Docosane 15.85 0 0
Dimethylnaphthalene 18.8 0 0
4-ethyl-dibenzothiophene 21.1 1.6 6
3-pentylthiophene 18.9 1.25 2.6
7,8-benzoquinoline 19.5 3.7 5.7
Methylbenzo cyclohexane 20.4 0.49 0
表3  Hildebrand 和Hansen溶解度参数(MPa1/2)
Asphalt system Tc(docosane) Tc(dimethylnaphthalene)
443.15 K
400 K
358.15 K
298.15 K
0.048
0.21
147.2
182.8
0.004 7
0.011 9
0.215
1.934
表4  二十二烷和二甲基萘分子的松弛时间(ns)
图11  不同生物油添加量再生沥青的回转半径[86]
1 Fu H, Xie L, Dou D , et al. Storage stability and compatibility of asphalt binder modified by SBS graft co-polymer[J]. Construction & Building Materials, 2007,21:1528.
2 Wei J, Liu Z, Zhang Y . Rheological properties of amorphous poly alpha olefin (APAO) modified asphalt binders[J]. Construction & Building Materials, 2013,48:533.
3 Zhou X, Zhang G, Liu R , et al. Molecular simulations of anti-aging mechanisms on Nano-LDHs modified asphalt[J]. Key Engineering Materials, 2014,599:198.
4 Zhou X, Wu S, Liu Q , et al. Effect of surface active agents on the rheological properties and solubility of LDHs modified asphalt[J]. Materials Research Innovations, 2015,19:972.
5 Greenfield M L . Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011,12:325.
6 Boek E S, Yakovlev D S, Headen T F . Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation[J]. Energy Fuels, 2009,23:1209.
7 Pan T, Yu Q , Stephen. Quantum-chemistry based study of beech-wood lignin as an antioxidant of petroleum asphalt[J]. Journal of Materials in Civil Engineering, 2013,10:1477.
8 Allen M P, Tildesley D J. Computer simulation of liquids[M]. New York: Oxford University Press, 1989.
9 Zhang L, Greenfield M L . Analyzing properties of model asphalts using molecular simulation[J]. Energy Fuels, 2007,21:1712.
10 Zhang L, Greenfield M L . Effects of polymer modification on pro-perties and micro-structure of model asphalt systems[J]. Energy Fuels, 2008,22:3363.
11 Zhang L, Greenfield M L . Molecular orientation in model asphalts using molecular simulation[J]. Energy Fuels, 2007,21:1102.
12 Groenzin H G, Mullins O C . Molecular size and structure of asphal-tenes from various sources[J]. Energy Fuels, 2000,14(3):677.
13 Li D D, Greenfield M L . Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014,115:347.
14 Groenzin H, Mullins O . Molecular size and structure of asphaltenes[J]. Liquid Fuels Technology, 2001,19:219.
15 Zhang L Q, Greenfield M L . Final report-developing model ashpalt systems using molecular simulation[R]. Rhode Island:University of Rhode Island, 2009.
16 Jian C, Tang T, Bhattacharjee S . Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations[J]. Energy Fuels, 2013,27:2057.
17 Yao H, Dai Q, You Z . Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydra-ted lime modified asphalt mixtures[J]. Construction & Building Materials, 2015,101(1):536.
18 Pomerantz A E, Seifert D J, Bake K D , et al. Sulfur chemistry of asphaltenes from a highly compositionally graded oil column[J]. Energy Fuels, 2013,27:4604.
19 Zuo J Y, Mullins O C, Freed D , et al. Advances in the Flory-Huggins-Zuo equation of state for asphaltene gradients and formation evaluation[J]. Energy Fuels, 2013,27:1722.
20 Pomerantz A E, Mullins O C, Paul G , et al. Orbitrap mass spectrometry: A proposal for routine analysis of nonvolatile components of petroleum[J]. Energy Fuels, 2011,25:3077.
21 Takanohashi T, Sato S, Saito I , et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates[J]. Energy Fuels, 2003,17:135.
22 Lowden L J, Chandler D . Theory of inter-molecular pair correlations for molecular liquids. Applications to the liquids carbon tetrachloride, carbon disulfide, carbon diselenide, and benzene[J]. Chem-Inform, 1975,6(13):5228.
23 Evans D J, Watts R O . On the structure of liquid benzene[J]. Molecular Physics, 1976,32:93.
24 Brandt H C A, Hendriks E M, Michels M A J , et al. Thermodynamic modeling of asphaltene stacking[J]. The Journal of Physical Chemistry, 1995,99:10430.
25 Pacheco-Sánchez J H, Zaragoza I P, Martínez-Magadán J M . Asphaltene aggregation under vacuum at different temperatures by molecular dynamics[J]. Energy Fuels, 2003,17:1346.
26 Forte E, Taylor S E . Thermodynamic modelling of asphaltene precipitation and related phenomena[J]. Advance Colloid Interface, 2011,12:621.
27 Mullins O C . The modified yen model[J]. Energy Fuels, 2010,24:179.
28 Mullins O C, Sheu E Y. Structures and dynamics of asphaltenes[M]. New York: Plenum Press, 1998.
29 Mullins O C, Sheu E Y, Hammami A , et al. Asphaltenes, heavy oils, and petroleomics[M]. New York:Springer, 2007.
30 Mullins O C, Sabbah H, Eyssautier J , et al. Advances in asphaltene science and the yen-mullins model[J]. Energy Fuels, 2012,26:3986.
31 Rogel E, Carbognani L . Density estimation of asphaltenes using molecular dynamics simulations[J]. Energy Fuels, 2003,17:378.
32 Siskin M, Kelemen S R, Eppig C P , et al. Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking[J]. Energy Fuels, 2006,20:1227.
33 Carauta A N M, Correia J C G, Seidl P R , et al. Conformational search and dimerization study of average structures of asphaltenes[J]. Journal of Molecular Structure Theochem, 2005,755:1.
34 Kuznicki T, Masliyah J H . Aggregation and partitioning of model asphaltenes at toluene-water interfaces: Molecular dynamics simulations[J]. Energy Fuels, 2009,10:5027.
35 Kowalewski I, Vandenbroucke M, Huc A Y , et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy Fuels, 1996,10:97.
36 Artok L Y, Su Y . Structure and Reactivity of petroleum derived asphaltene[J]. Energy Fuels, 1999,3:287.
37 Trauth D M . Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling[J]. Energy Fuels, 1994,54:576.
38 Polacco G, Stastna J, Biondi D , et al. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers[J]. Journal of Colloid & Interface Science, 2004,280:366.
39 Ouyang C, Wang S, Zhang Y , et al. Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts[J]. European Polymer Journal, 2006,42:446.
40 Jennings P W, Pribanic J A, Desando M A , et al. Binder characte-rization and evaluation by nuclear magnetic resonance spectroscopy[M]. Washington,DC:Strategic Highway Research Program,National Research Council, 1993.
41 Bhasin A, Bommavaram R, Greenfield M , et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2010,23:485.
42 Cong Y F, Liao K J, Zhai Y C . Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering, 2005,56(5):769(in Chinese).
42 丛玉凤, 廖克俭, 翟玉春 . 分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005,56(5):769.
43 Zhang L, Greenfield M L . Rotational relaxation times of individual compounds with simulations of molecular asphalt models[J]. The Journal of Chemical Physics, 2010,18:4502.
44 Alvarez-Ramirez F, Ramirez-Jaramillo E . Calculation of the interaction potential curve between asphaltene-asphaltene, asphaltene-resin, and resin-resin systems using density functional theory[J]. Academic Radiology, 2006,5(9):S432.
45 Zhou X, Wu S, Liu G , et al. Molecular simulations and experimental evaluation on the curing of epoxy bitumen[J]. Materials & Structures, 2016,49:241.
46 Stoyanov S R, Gusarov S . Multiscale modelling of asphaltene dis-aggregation[J]. Molecular Simulation, 2008,34(10-15):953.
47 Stoyanov S R, Gusarov S . Modelling of bitumen fragment adsorption on Cu + and Ag + exchanged zeolite nanoparticles [J]. Molecular Simulation, 2008,34(10-15):943.
48 Schmets A J , et al. First-principles investigation of the multiple phases in bituminous materials: The case of asphaltene stacking[M]. Leiden, NL:CRC Press, 2009.
49 Ruiz-Morales Y, Mullins O C . Polycyclic aromatic hydrocarbons of asphaltenes analyzed by molecular orbital calculations with optical spectroscopy[J]. Energy Fuels, 2007,21:256.
50 Ruiz-Morales Y, Wu X, Mullins O C . Electronic absorption edge of crude oils and asphaltenes analyzed by molecular orbital calculations with optical spectroscopy[J]. Energy Fuels, 2007,21:944.
51 Pan T . A first-principles based chemophysical environment for studying lignins as an asphalt antioxidant[J]. Construction & Building Materials, 2012,36:654.
52 Carauta A N M, Seidl P R , Chrisman E C A N, et al. Modeling solvent effects on asphaltene dimers[J]. Energy Fuels, 2005,19:1245.
53 Neurock M, Klein M T . Chapter 4 Monte Carlo simulation of asphaltene structure, reactivity and reaction pathways[M] ∥Deve-lopments in Petroleum Science. Elsevier Science & Technology, 2000: 59.
54 Boek E S, Wilson A D, Padding J T , et al. Multi-scale simulation and experimental studies of asphaltene aggregation and deposition in capillary flow[J]. Energy Fuels, 2010,24:2361.
55 Sun B, Zhou X X . Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2018,30(2):1.
56 Lu Y, Wang L. Molecular dynamics simulation to characterize asphalt-aggregate interfaces[M]. Frost, ed.IOS Press, 2010.
57 Lu Y, Wang L . Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010,11:393.
58 Headen T F, Boek E S . Potential of mean force calculation from molecular dynamics simulation of asphaltene molecules on a calcite surface[J]. Energy Fuels, 2010,24:499.
59 Robertson R E, Branthaver J F, Harnsberger P M , et al. Fundamental properties of asphalts and modified asphalts, Volume 1: Interpretive report[J]. Asphalt, 2001,32:99.
60 Tarefder R A, Arisa I . Molecular dynamic simulations for determining change in thermodynamic properties of asphaltene and resin because of aging[J]. Energy Fuels, 2011,25:2211.
61 Zhou X, Zhang X, Xu S . Evaluation of thermo-mechanical properties of graphene/carbon-nanotubes modified asphalt with molecular si-mulation[J]. Molecular Simulation, 2017,43:312.
62 Jeyranpour F, Alahyarizadeh G, Minuchehr H . The Thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation—A comparative study[J]. Polymer, 2016,88:9.
63 Zhao Z, Wu S, Zhou X . Molecular simulations of properties changes on nano-layered double hydroxides modified bitumen[J]. Materials Research Innovations, 2015,19:971.
64 Mahdizadeh S J, Goharshadi E K, Akhlamadi G . Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study[J]. Journal of Molecular Graphics & Modelling, 2016,68:1.
65 Xu P . Interface behaviors of asphalt and aggregates based on molecule dynamic simulations[D]. Xi’an:Chang’an University, 2013(in Chinese).
65 徐霈 . 基于分子动力学的沥青与集料界面行为虚拟实验研究[D]. 西安:长安大学, 2013.
66 Wu S, Mo L, Shui Z , et al. Investigation of the conductivity of asphalt concrete containing conductive fillers[J]. Carbon, 2005,43(7):1358.
67 Zhou Y, Li P L . Research on asphalt self-healing property based on molecular modeling technique[J]. Shanxi Architecture, 2013,39(6):83(in Chinese).
67 周艳, 李佩林 . 基于分子模拟技术的沥青自愈合性能研究[J]. 山西建筑, 2013,39(6):83.
68 Sun D, Lin T, Zhu X , et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt bin-ders[J]. Computational Materials Science, 2016,114:86.
69 John A. Dean M T. Lange’s Handbook of Chemistry[M]. New York:McGraw-Hill, 1985.
70 Ding Y J . Study on chemical structure characteristic of asphalt using molecular simulation[D]. Chongqing:Chongqing Jiaotong University, 2013(in Chinese).
70 丁勇杰 . 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆:重庆交通大学, 2013.
71 Muller-Plathe F . Scale-hopping in computer simulations of polymers[J]. Soft Materials, 2003,1:1.
72 Murgich J . Molecular simulation and the aggregation of the heavy fractions in crude oils[J]. Molecular Simulation, 2003,29:451.
73 Aguilera-Mercado B, Herdes C, Murgich J , et al. Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils[J]. Energy Fuels, 2006,20:327.
74 Cui S T, Cummings P T, Cochran H D . The calculation of viscosity of liquid n-decane and n-hexadecane by the Green-Kubo method[J]. Molecular Physics, 1998,93:117.
75 Gordon P A . Characterizing isoparaffin transport properties with Stokes-Einstein relationships[J]. Industrial & Engineering Chemistry Research, 2003,42:7025.
76 Mondello M, Grest G S . Viscosity calculations of n-alkanes by equilibrium molecular dynamics[J]. Journal of Chemical Physics, 1997,106:9327.
77 Vicente L, Soto C, Pacheco-Snchez H , et al. Application of molecular simulation to calculate miscibility of a model asphaltene molecule[J]. Fluid Phase Equilibria, 2006,239:100.
78 Hildebrand J, Scott R L . The solubility of nonelectrolytes[M]. Third ed. New York: Reinhold, 1950.
79 Hansen C M. Hansen solubility parameters-A user’s handbook[M]. Boca Raton: CRC Press, 2000.
80 Hansen C M . Aspects of solubility, surfaces, and diffusion in polymers[J]. Progress in Organic Coatings, 2004,1:55.
81 Hansen C M, Smith A L . Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers[J]. Carbon, 2004,42:1591.
82 Hansen C M . 50 Years with solubility parameters-past and future[J]. Progress in Organic Coatings, 2004,51(1):77.
83 Barton A F M . Solubility parameters[J]. Chemical Reviews, 1975,75:731.
84 Wang S J, Zheng Y C, Ding Y J . Based on molecular simulation and evaluation on solubility of mono connected SBS and asphalt[J].Highways and Automotive Applications, 2013(1):100(in Chinese).
84 王淑娟, 郑永昌, 丁勇杰 . 基于分子模拟技术的单体接枝SBS与沥青相容性研究[J].公路与汽运, 2013(1):100.
85 Cui S T, Cummings P T, Cochran H D . Multiple time step non-equilibrium molecular dynamics simulation of the rheological properties of liquid n-decane[J]. The Journal of Chemical Physics, 1996,104(1):255.
86 Sun B, Zhou X X . Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2017,119:1.
[1] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[2] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[3] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[4] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[5] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[6] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[7] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[8] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[9] 董素芬, 宋泽轩, 张文辉, 黄智德, 韩宝国. 热诱导自愈合沥青混凝土研究综述:一种可持续路面材料[J]. 材料导报, 2024, 38(22): 23080062-12.
[10] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[11] 虞将苗, 冯致皓, 陈富达, 于华洋. 乳化沥青冷再生路面研究进展:材料特性、组成设计及性能评价[J]. 材料导报, 2024, 38(22): 24030095-10.
[12] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[13] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[14] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[15] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed