Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23090085-7    https://doi.org/10.11896/cldb.23090085
  高分子与聚合物基复合材料 |
水性环氧树脂复合改性乳化沥青固化行为及性能研究
刘圣洁1,*, 曹旭1, 张钰林1, 傅永腾1, 焦晓东2
1 河海大学土木与交通学院,南京 210098
2 广西交科集团有限公司,南宁 530007
Research on Curing Behavior and Performance of Waterborne Epoxy Resin Composite Modified Emulsified Asphalt
LIU Shengjie1,*, CAO Xu1, ZHANG Yulin1, FU Yongteng1, JIAO Xiaodong2
1 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
2 Guangxi Transportation Science and Technology Group Co.,Ltd., Nanning 530007, China
下载:  全 文 ( PDF ) ( 5126KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单一改性剂对乳化沥青改性性能存在不足,复合改性已成为当前乳化沥青改性的重点研究方向。本工作采用水性环氧树脂(WER)和丁苯橡胶(SBR)胶乳对成品乳化沥青进行复合改性,分析WER掺量对复合改性乳化沥青的储存稳定性、固化速率、粘结性能和与集料黏附性等影响,建立了固化时间-拉拔强度-与集料黏附性等级的相关性,基于数字化呈现方式分析复合改性乳化沥青的荧光显微图,研究了复合改性乳化沥青的微观形态和红外特征。结果表明:随着WER掺量的增加,复合改性乳化沥青固化时间变短,而拉拔强度和与集料黏附性均有所提高,且三者之间具有较高的非线性相关性;但当水性环氧树脂掺量达到15%时,其性能变化规律变得不稳定。且随着WER掺量持续增加,复合改性乳化沥青的储存稳定性和相容性会变差;环氧树脂在复合改性乳化沥青中的微观分布比例随着WER掺量的增加而提升,但其分布均匀性急剧变差。综合性能与经济性考虑,可选择6%~9%掺量的WER对乳化沥青复合改性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘圣洁
曹旭
张钰林
傅永腾
焦晓东
关键词:  路面工程  复合改性乳化沥青  水性环氧树脂  粘结性能  荧光显微  红外光谱    
Abstract: The insufficiencies of single modification agents in enhancing the performance of emulsified asphalt have prompted a shift towards an emphasis on composite modification. This study focused on the composite modification of emulsified asphalt using waterborne epoxy resin (WER) and styrene-butadiene rubber (SBR) latex. A comprehensive analysis was carried out to assess the influence of WER content on the composite modified emulsified asphalt, including evaluations of storage stability, curing rate, bonding properties, and asphalt-aggregate adhesion. Moreover, correlations between curing time, pull-off strength, and adhesion grade were established. Additionally, digital analysis of fluorescence images and an investigation into the microstructure and infrared characteristics of the composite modified emulsified asphalt were conducted. The findings indicated that with the increasing of WER content in the composite modified emulsified asphalt, it’s curing time should decrease, while it’s pull-off strength and asphalt-aggregate adhesion should improve. Notably, a significant non-linear correlation was observed among these there factors. However, the performance variation pattern became unstable as the WER content approached 15%. Conversely, with an increase of WER content, the storage stability and compatibility of the composite modified emulsified asphalt deteriorated, accompanied by an increase in the proportion of micro-distributed epoxy resin within the composite, albeit with impaired distribution uniformity. Ultimately, this comprehensive analysis identified an optimal WER content range of 6% to 9% for the composite modification of emulsified asphalt, considering both comprehensive performance and economic factors.
Key words:  pavement engineering    composite modified emulsified asphalt    waterborne epoxy resin    adhesion performance    fluorescence microscopy    infrared spectra
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  U414  
基金资助: 国家自然科学基金(51908194);广西重点研发计划项目(桂科AB20297033;桂科AB23026144)
通讯作者:  * 刘圣洁,河海大学土木与交通学院副教授、硕士研究生导师。2009—2015年在长安大学公路学院获得道路与铁道工程工学硕士和工学博士学位,2015年加入河海大学土木与交通学院工作至今,主要从事生态环保型铺面技术与新材料和公路养护技术的研究。以第一作者/通信作者发表学术论文30余篇,其中SCI/EI 20余篇。 lsjwork@126.com   
引用本文:    
刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
LIU Shengjie, CAO Xu, ZHANG Yulin, FU Yongteng, JIAO Xiaodong. Research on Curing Behavior and Performance of Waterborne Epoxy Resin Composite Modified Emulsified Asphalt. Materials Reports, 2024, 38(24): 23090085-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090085  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23090085
1 Xiang Q,Xiao F.Construction and Building Materials,2020,235,117529.
2 He L H,Hou Y T,Yang F.Journal of Materials in Civil Engineering,2023,35(6),04023145.
3 Wang P P,Tian X G,Zhang R,et al.Journal of Materials in Civil Engineering,2021,33(8),04021177.
4 Zhang Y J,Wu W M,Cao H S,et al.Key Engineering Materials,2020,842,337.
5 Yin Y Y,Han S,Kong H Y,et al.Construction and Building Materials,2022,315,125604.
6 Xu O M,Li Y,Xu R T,et al.Construction and Building Materials,2022,325,126709.
7 Bi Y Q,Li R,Han S,et al.Materials,2020,13(5),1224.
8 He L H,Zhang B,Ma Y F,et al.New Chemical Materials,2022,50(11),240 (in Chinese).
何丽红,张博,马悦帆,等.化工新型材料,2022,50(11),240.
9 Liu F Q,Zheng M L,Fan X P,et al.Construction and Building Materials,2021,274,122059.
10 Kong L,Li J,Luo Q X,et al.Applied Chemical Industry,2021,50(8),2076 (in Chinese).
孔林,李骏,罗群星,等.应用化工,2021,50(8),2076.
11 Meng J D,Bian C Y,Chen Y J,et al.Journal of Wuhan University of Technology: Transportation Science & Engineering,2023,47(4),716 (in Chinese).
孟建党,边朝阳,陈彦军,等.武汉理工大学学报(交通科学与工程版),2023,47(4),716.
12 Yao X G,Tan L Z,Xu T.Construction and Building Materials,2022,318,126178.
13 Wang Q Z,Zhang Z Y,Liang Y S,et al.Thermosetting Resin,2021,36(6),53 (in Chinese).
王清洲,张志银,梁瑛硕,等.热固性树脂,2021,36(6),53.
14 Liu F Q,Zhang M L,Fan X P,et al.Construction and Building Materials,2021,295,123588.
15 Shi F Z,Jia X J,Wang Z,et al.Journal of Lanzhou University of Technology,2021,47(2),138 (in Chinese).
石福周,贾小军,王震,等.兰州理工大学学报,2021,47(2),138.
16 Liu F Q,Zheng M L,Liu X,et al.Construction and Building Materials,2021,301,124106.
17 Yao X G,Xu H Y,Xu T.Construction and Building Materials,2022,352,129021.
18 Wang K,Liu F Q,Sun T Y,et al.Science Technology and Engineering,2022,22(1),359 (in Chinese).
王可,刘富强,孙天一,等.科学技术与工程,2022,22(1),359.
19 Zhang Q,Ma Z,Xu Y H,et al.Journal of Functional Materials,2020,51(5),5208 (in Chinese).
张倩,马昭,徐义恒,等.功能材料,2020,51(5),5208.
20 Meng Y J,Zhao Q X,Lu Z B,et al.Science Technology and Engineering,2021,21(13),5524 (in Chinese).
孟勇军,赵启雄,卢祖标,等.科学技术与工程,2021,21(13),5524.
21 He L H,Zhao Z B,Li Q L,et al.New Chemical Materials,2024,52(2), 294(in Chinese).
何丽红,赵智博,李青林,等.化工新型材料,2024,52(2) , 294.
22 Hu F G,Tian X G,Hu H L,et al.Journal of Building Materials,2021,24(4),895 (in Chinese).
胡富贵,田小革,胡宏立,等.建筑材料学报,2021,24(4),895.
23 Li P F,Ji J,Wang Z,et al.Journal of Cleaner Production,2022,353,131461.
[1] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[2] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[3] 虞将苗, 冯致皓, 陈富达, 于华洋. 乳化沥青冷再生路面研究进展:材料特性、组成设计及性能评价[J]. 材料导报, 2024, 38(22): 24030095-10.
[4] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[5] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[6] 罗婷, 王嘉昕, 谢斌, 艾长发, 颜川奇. 不同温拌剂对高黏沥青老化性能的影响[J]. 材料导报, 2024, 38(13): 22120076-9.
[7] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[8] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[9] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[10] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[11] 陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
[12] 傅豪, 王朝辉, 刘鲁清, 刘伟, 余四新. 路用水性环氧改性乳化沥青组成优化及耐久性能评价[J]. 材料导报, 2023, 37(18): 22010074-9.
[13] 王言磊, 陆军, 梁鹏飞, 罗婷, 颜川奇. 不同温拌剂对高黏沥青流变及微观特性影响研究[J]. 材料导报, 2023, 37(16): 22010171-6.
[14] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[15] 屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed