Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 23010119-8    https://doi.org/10.11896/cldb.23010119
  无机非金属及其复合材料 |
免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究
吴琛1,*, 储福玮1, 龚明子2, 曾志攀3
1 福建理工大学福建省土木工程新技术与信息化重点实验室,福州 350118
2 中交一公局厦门工程有限公司,福建 厦门 361021
3 福建省建筑设计研究院有限公司,福州 350001
Experimental Investigation of Interfacial Bond Behavior Between Non-autoclave Curing Ultra-high Performance Concrete and Existing Normal Concrete
WU Chen1,*, CHU Fuwei1, GONG Mingzi2, ZENG Zhipan3
1 Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fujian University of Technology, Fuzhou 350118, China
2 CCCC First Highway Xiamen Engineering Co., Ltd., Xiamen 361021, Fujian, China
3 Fujian Provincial Institute of Architectural Design and Research Co., Ltd., Fuzhou 350001, China
下载:  全 文 ( PDF ) ( 13740KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 免蒸养超高性能混凝土(Ultra-high performance concrete,UHPC)在常温养护下具有超高强、超耐久等优异性能,其与普通混凝土(Normal concrete,NC)界面的粘结性能是保证免蒸养UHPC加固NC结构获得良好性能的重要因素。为研究免蒸养UHPC-NC界面粘结性能,设计直剪试验,分析免蒸养UHPC龄期、NC强度、NC表面处理方式和界面粘结剂对界面粘结性能的影响,提出了免蒸养UHPC-NC界面粘结-滑移本构模型,并给出相关刚度系数建议值。结果表明:免蒸养UHPC-NC试件界面破坏模式主要分为粘结界面破坏、粘结界面和NC破坏、NC破坏及NC和UHPC破坏;刻槽组较凿毛组试件具有明显的开裂阶段,表现出一定的延性且具有更高的粘结强度,最大提高量为183.7%;界面使用SiKa 32LP结构胶时,其粘结强度为4.91 MPa,是其他界面粘结剂试件粘结强度的两倍以上。因此,当采用免蒸养UHPC加固NC构件时建议NC表面刻槽和采用SiKa 32LP结构胶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴琛
储福玮
龚明子
曾志攀
关键词:  免蒸养超高性能混凝土(免蒸养UHPC)  粘结性能  直剪试验  荷载-滑移曲线  粘结-滑移本构模型    
Abstract: Non-autoclave curing ultra-high performance concrete(UHPC)has excellent properties such as ultra-high strength and ultra-durability under normal curing. It is noted that, in strengthening normal concrete(NC)structure, the bonding property of UHPC-NC interface is an important factor to ensure the good performance of non-autoclave curing UHPC. In order to study the bonding properties of non-autoclave curing UHPC-NC interface, this paper designed the direct shear tests to analyze the influences of non-autoclave curing UHPC ages, NC strengths, NC surface treatments and interface binders. Furthermore, this paper proposed the bond-slip constitutive model of non-autoclave curing UHPC-NC interface. In addition, this paper presented the relative stiffness coefficient for further study. Experimental results show that:the failure modes of the interface for non-autoclave curing UHPC-NC specimens can be divided into bonding interface failure, bonding interface and NC failure, NC failure, and both NC and UHPC failure; compared with the specimens with roughing, the specimens with grooves have the obvious cracking stage and higher bond strength as well as ductility. Furthermore, the maximum bond strength increased 183.7%; when SiKa 32LP structural adhesive was used at the interface, specimens’ bond strength was 4.91 MPa, which was 2 times than that with another structural adhesive. As a result, when the non-autoclave curing UHPC is used to strengthen the NC member, it is recommended to groove the NC surface and use SiKa 32LP structural adhesive.
Key words:  non-autoclave curing ultra-high performance concrete (UHPC)    bond property    direct shear test    loading-slip relationship curve    bond-slip constitutive model
发布日期:  2023-12-19
ZTFLH:  U444  
基金资助: 国家自然科学基金(52378494);福建省高校产学合作项目(2022H6032);福建省引导性科技计划项目(2021H0032)
通讯作者:  *吴琛,博士、教授、博士研究生导师、福建省百千万人才、福建省高校新世纪优秀人才。2007年福州大学结构工程专业博士毕业。目前主要从事工程结构安全诊断与加固、结构智能监测/检测、结构抗震等领域的研究。主持国家自然科学基金、福建省高校产学合作课题、福建省自然科学基金面上项目等课题20余项,发表论文50余篇,授权专利10余项。现为福建省土木工程新技术与信息化重点实验室主任。wuchen2001@126.com   
引用本文:    
吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
WU Chen, CHU Fuwei, GONG Mingzi, ZENG Zhipan. Experimental Investigation of Interfacial Bond Behavior Between Non-autoclave Curing Ultra-high Performance Concrete and Existing Normal Concrete. Materials Reports, 2023, 37(24): 23010119-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010119  或          http://www.mater-rep.com/CN/Y2023/V37/I24/23010119
1 Richard P, Cherezy M. Cement and Concrete Research, 1995, 25(7), 1501.
2 Mu R, Chen J, Chen X, et al. Construction and Building Materials, 2023, 406, 133431.
3 Chen B C, Ji T, Huang Q W, et al. Journal of Architecture and Civil Engineer, 2014, 31(3), 1 (in Chinese).
陈宝春, 季韬, 黄卿维, 等. 建筑科学与工程学报, 2014, 31(3), 1.
4 Lee M G, Wang Y C, Chiu C T. Construction and Building Materials, 2007, 21(1), 182.
5 Brhwiler E, Denari E. Structural Engineering International, 2013, 23(4), 450.
6 Shao X D, Qiu M H, Yan B F, et al. Materials Reports, 2017, 31(23), 33 (in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报, 2017, 31(23), 33.
7 Wu Y X, Zhen X Y, Hang W, et al. Materials Reports, 2023, 37(16), 1 (in Chinese).
吴应雄, 郑新颜, 黄伟, 等. 材料导报, 2023, 37(16), 1.
8 Wu C, Chen K D, Lin S S, et al. Industrial Construction, 2021, 51(1), 140 (in Chinese).
吴琛, 陈柯丹, 林上顺, 等. 工业建筑, 2021, 51(1), 140.
9 Muñoz M A C, Harris D K, Ahlborn T M, et al. Journal of Materials in Civil Engineering, 2014, 26(8), 1.
10 Tayeh B A, Abubakar B H, Megatjohari M A, et al. Construction and Building Materials, 2012, 36, 538.
11 Tayeh B A, Abubakar B H, Megatjohari M A, et al. Journal of Adhesion Science and Technology, 2014, 28(18), 1846.
12 Hussein H H, Walsh K K, Sargand S M, et al. Journal of Materials in Civil Engineering, 2016, 28(5), 04015208.
13 Wang X W. Research on the interfacial shear behavior of UHPC and reinforced concrete. Master’s Thesis, Hunan University, China, 2016 (in Chinese).
王兴旺. UHPC与普通钢筋混凝土结构界面抗剪性能研究. 硕士学位论文, 湖南大学, 2016.
14 Zhang Y, Zhu P, Wang X, et al. Construction and Building Materials. 2020, 236(117480), 1.
15 Wu X G, Zhang X Z. Journal of Building Structures, 2018, 39(10), 156 (in Chinese).
吴香国, 张孝臣. 建筑结构学报, 2018, 39(10), 156.
16 Rao X P, Huo W B, Hu Z M, et al. Building Structure, 2021, 51(14), 101 (in Chinese).
饶欣频, 霍文斌, 胡智敏, 等. 建筑结构, 2021, 51(14), 101.
17 Zhang Y, Wu J, Shao X D, et al. China Civil Engineering Journal, 2021, 54(7), 81 (in Chinese).
张阳, 吴洁, 邵旭东, 等. 土木工程学报, 2021, 54(7), 81.
18 Zhou J T, Hu T X, Yang J, et al. Materials Reports, 2021, 35(16), 16050 (in Chinese).
周建庭, 胡天祥, 杨俊, 等. 材料导报, 2021, 35(16), 16050.
19 Zhao Z F, Yu Y H, Zhao G F. Building Structure, 2000, 30(1), 26 (in Chinese).
赵志方, 于跃海, 赵国藩. 建筑结构, 2000, 30(1), 26.
20 China National Standardization Administration Committee. Reactive powder concrete:GB/T 31387—2015, China Standards Press, China, 2015 (in Chinese).
中国国家标准化管理委员会. 活性粉末混凝土:GB/T 31387—2015, 中国标准出版社, 2015.
21 Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard test method for physical and mechanical properties of concrete:GB50081-2019, China Architecture & Building Press, China, 2019 (in Chinese).
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB50081-2019, 中国建筑工业出版社, 2019.
22 ACI. Concrete repair guide:ACI 546R-04, American Concrete Institute, USA, 2004.
[1] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[2] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[3] 陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
[4] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[5] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[6] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[7] 王舒永, 张凌凯, 陈国新, 袁俊. 基于三维扫描技术的土石混合体离散元模型参数反演及直剪模拟[J]. 材料导报, 2021, 35(10): 10088-10095.
[8] 陈营, 魏燕红, 陈德平, 慕东. 中温成型含硅可溶性聚酰亚胺薄膜及其性能研究[J]. 材料导报, 2020, 34(Z1): 572-575.
[9] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[10] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[11] 白晓宇, 匡政, 张明义, 王永洪, 刘俊伟, 闫楠. 全螺纹GFRP抗浮锚杆与混凝土底板黏结锚固性能的试验研究[J]. 材料导报, 2019, 33(18): 3035-3042.
[12] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed