Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10088-10095    https://doi.org/10.11896/cldb.20010144
  无机非金属及其复合材料 |
基于三维扫描技术的土石混合体离散元模型参数反演及直剪模拟
王舒永1,2, 张凌凯1,2, 陈国新1,2, 袁俊3
1 新疆农业大学水利与土木工程学院,乌鲁木齐 830052
2 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052
3 中国电力工程顾问集团西北电力设计院有限公司,西安 710075
Parameter Inversion and Direct Shear Simulation of Discrete Element Model of Soil-Rock Mixture Based on 3D Scanning Technology
WANG Shuyong1,2, ZHANG Lingkai1,2, CHEN Guoxin1,2, YUAN Jun3
1 College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2 Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
3 Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Xi'an 710075, China
下载:  全 文 ( PDF ) ( 10248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用三维扫描技术构建不同粒径的真实块石形状数据库,并建立不同含石量的土石混合体离散元随机模型。采用正交试验设计原理,分析试样宏细观参数间力学敏感性并建立两者的线性方程,结合物理试验对模型进行参数标定。对不同法向应力、不同含石量的土石混合体进行直剪模拟,结果表明:岩土体在剪切过程中,剪应力逐渐增大,变形先剪缩后剪胀;增加法向应力,试样抗剪强度提高,剪缩程度增大,但初始模量变化微弱;低含石量下剪力无明显峰值,应变硬化现象显著,变形以剪缩为主,随着含石量增加,初始模量及抗剪强度升高,高含石量下出现应力峰值,之后表现为应变软化,剪胀性突出。土石混合体增加法向应力或含石量,均会提高其初始配位数和力链强度,其中增加法向应力,配位数整体水平上升;在剪切过程中,低含石量下配位数呈递增趋势,高含石量下配位数逐渐减小,配位数不会持续增或减,当达到临界值时与试样体积一同趋于稳定;含石量越大剪切带越宽厚,剪切面周围速度及位移变化梯度较大,剪切中后期试样内出现逆时针涡旋速度场;动剪切盒内配位数较大,静剪切盒内配位数较小,剪切带处配位数波动幅度最大;岩土体中弱力链散乱稀疏,强力链分布集中,剪切时力链强度先增大后减小,逐渐发散变粗并沿对角线延伸,最终贯穿剪切区域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王舒永
张凌凯
陈国新
袁俊
关键词:  土石混合体  三维扫描技术  大型直剪试验  宏观变形规律  细观结构特征    
Abstract: Based on three-dimensional scanning technology, the databases with the real rock blocks shape of different particle sizes and discrete element models of soil-rock mixture (S-RM) samples with different stone contents were established. Mechanical sensitivity between the macro-meso parameters was analyzed and the linear equations were built according to the principle of orthogonal test design, calibrating meso-para-meters for the discrete element model by mechanic tests data. The large-scale numerical shear tests of the stone contents' S-RM samples under different normal stresses were conducted. The results show that: the shear stress increases gradually and the volume deformation first contraction and then dilatancy during the shear process. It is noteworthy that with the increase of normal stresses, the peak strength and shear contraction deformation all increase, but the initial modulus changes slightly. The S-RM has no obvious peak strength under low contents of stone, and then the phenomenon of strain hardening is significant and shearing is the mainly deformation. The initial modulus and shear strength increases with the increase of stone content. For S-RM with high contents of stone, the peak stress occurs and then shows strain softening and prominent shear dila-tancy deformation in the late shear. The strength of force chain and initial coordination number of S-RM increases with the increase of either the stone contents or the normal stress. The increase of normal stress increase the overall level of coordination number. In shearing process, for S-RM with low contents of stone, the coordination number increase gradually with the increase of shear displacement, while the trend decreases for the stone contents of S-RM with high decreases. The fluctuation of coordination number and sample volume tends to be stable when reach to the critical value. As the stone content increases continually, the shear zone of the S-RM sample becomes wider, the gradient of velocity and displacement around the shear plane increases. A counter-clockwise vortex velocity field appears in the samples during the mid-to-late shear. The coordination number of dynamic shear box large compared to that of static shear box, and the coordination number in the shear zone fluctuates the most. In the S-RM, the weak force chain is scattered and sparse, while the strong force chain is concentrated. During the shear process, the strength of force chain increases first and then decreases. With the diverges and thickens of force chain, eventually the locally force chain are connected to each other diagonally.
Key words:  soil-rock mixture    3D scanning technology    large direct shear test    macroscopic deformation law    meso-structural features
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TU43  
基金资助: 2019年新疆自治区自然科学青年基金项目(2019D01B16)
通讯作者:  xjauzlk@163.com   
作者简介:  王舒永,博士研究生,主要从事复杂岩土介质多尺度灾变机理及其数值模拟研究。
张凌凯,博士,主要从事粗粒土的静动力学特性及本构模型的研究。
引用本文:    
王舒永, 张凌凯, 陈国新, 袁俊. 基于三维扫描技术的土石混合体离散元模型参数反演及直剪模拟[J]. 材料导报, 2021, 35(10): 10088-10095.
WANG Shuyong, ZHANG Lingkai, CHEN Guoxin, YUAN Jun. Parameter Inversion and Direct Shear Simulation of Discrete Element Model of Soil-Rock Mixture Based on 3D Scanning Technology. Materials Reports, 2021, 35(10): 10088-10095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010144  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10088
1 Li X, Liao Q L, He J M. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3), 16.
2 Li S H, Li X, Liu X Y. Chinese Journal of Rock Mechanics and Enginee-ring, 2006, 25(6), 1125 (in Chinese).
李世海, 李晓, 刘晓宇. 岩石力学与工程学报, 2006, 25(6), 1125.
3 You X H. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(11), 1748 (in Chinese).
油新华. 岩石力学与工程学报, 2002, 21(11), 1748.
4 Meng X Y,Li S H,Zhang J F. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10), 1760 (in Chinese).
孟祥跃, 李世海, 张均锋. 岩石力学与工程学报, 2004, 23(10), 1760.
5 Nakao T, Fityus S. Geotechnical Testing Journal, 2008, 31(5), 393.
6 Bagherzadeh K A, Mirghasemi A A. Particuology, 2009, 7(1), 83.
7 Savely J P. International Journal of Mining and Geological Engineering, 1990, 8(3), 203.
8 Xue Y D, Liu Z Q, Huang H W. Architectural and Environmental Engineering, 2012, 34(6), 75 (in Chinese).
薛亚东, 刘忠强, 黄宏伟. 土木建筑与环境工程, 2012, 34(6), 75.
9 Liu W P, Shi W M, Kong W X, et al. Rock and Soil Mechanics, 2005, 26(11), 166 (in Chinese).
刘文平, 时卫民, 孔位学, 等. 岩土力学, 2005, 26(11), 166.
10 Liu X R, Tu Y L, Wang P, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(8), 1425 (in Chinese).
刘新荣, 涂义亮, 王鹏, 等. 岩土工程学报, 2017, 39(8), 1425.
11 Cundall P A. In: Proceedings of the Symposium of the International Society for Rock Mechanics. Rotterdam, 1971, pp. 129.
12 Strack O D L, Cundall P A. The distinct element method as a tool for research in granular media, Part Ⅰ. University of Minnesota, USA, 1978.
13 Cundall P A, Strack O D L. The distinct element method as a tool for research in granular media, Part Ⅱ. University of Minnesota, USA, 1979.
14 Cundall P A, Strack O D L. Geotechnique, 1979, 29(1), 47.
15 Graziani A, Rossini C, Rotonda T. International Journal of Geomecha-nics, 2012, 12(6), 648.
16 Skinner A E, Mice B S. Geotechnique, 1969, 19(1),150.
17 Xu W J, Yue Z Q, Hu R L. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5), 749.
18 Kong L, Peng R. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10), 2112 (in Chinese).
孔亮, 彭仁. 岩石力学与工程学报, 2011, 30(10), 2112.
19 Liu X N, Shi C. Science Technology and Engineering, 2014, 14(36), 108 (in Chinese).
刘兴宁, 石崇. 科学技术与工程, 2014, 14(36), 108.
20 Medley E W. The engineering characterization of mélanges and similar block-in-matrix rocks(bimrocks). Ph. D. Thesis, University of California at Berkeley, USA, 1994.
21 Potyondy D O, Cundall P A. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8),1329.
22 Cong Y, Wang Z Q, Zheng Y R, et al. Chinese Journal of Geotechnical Engineering, 2015, 37(6),1031 (in Chinese).
丛宇, 王在泉, 郑颖人, 等. 岩土工程学报, 2015, 37(6), 1031.
23 Nohut S, Cevik A. International Journal for Multiscale Computational Engineering, 2014, 12(1), 1.
24 Deng R, Lin J Z, Yang H Z.Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(4),17(in Chinese).
邓瑞,林金朝,杨宏志.重庆工商大学学报(自然科学版),2019,36(4),17.
[1] 余振鹏, 黄侨, 谢兴华, 卢斌. 普通与轻集料砼压-剪复合受力性能试验研究[J]. 材料导报, 2018, 32(24): 4269-4275.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed