Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4269-4275    https://doi.org/10.11896/j.issn.1005-023X.2018.24.011
  无机非金属及其复合材料 |
普通与轻集料砼压-剪复合受力性能试验研究
余振鹏1, 黄侨1, 谢兴华2, 卢斌2
1 东南大学交通学院,江苏 南京 210096;
2 南京水利科学研究院水工水力学研究所, 南京 210029
Comparative Study on Compressive-Shear Behavior of Ordinary Concrete and Lightweight Aggregate Concrete
YU Zhenpeng1, HUANG Qiao1, XIE Xinghua2, LU Bin2
1 School of Transportation, Southeast University, Nanjing 210096;
2 Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029
下载:  全 文 ( PDF ) ( 2703KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究普通混凝土与轻集料混凝土压-剪复合受力状态下的力学性能,以不同轴压比为加载工况对混凝土压-剪复合受力进行试验研究。通过压-剪液压伺服机得到了两种混凝土破坏形态和横向剪切荷载-位移曲线,提取横向剪切荷载-位移曲线特征值,对比分析两种混凝土复合受力的力学性能。研究结果表明,两种混凝土横向剪切峰值荷载、剪切峰值位移和残余荷载均随轴压比提高而增大,轻集料混凝土提高相对更为明显。由残余荷载分析可知,两种混凝土剪切破坏面存在稳定的摩擦系数,轻集料混凝土的摩擦系数明显高于普通混凝土。应用数学回归分析方法得到两种混凝土轴向荷载与剪切峰值荷载、轴向荷载与残余荷载均呈线性变化关系。基于八面体空间应力提出两种混凝土不同解析式的破坏准则方程,所得解析式能够很好地反映两种混凝土压-剪复合受力破坏规律,为工程应用的研究提供有利价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余振鹏
黄侨
谢兴华
卢斌
关键词:  普通混凝土  轻集料混凝土  压-剪受力  试验分析  破坏准则    
Abstract: In order to study the mechanical properties of ordinary concrete and lightweight aggregate concrete under compression-shear composite stress, the experiment of compression-shear composite stress was carried out under different axial compression ratio. The different failure modes and the shear load-displacement curve for two concrete were extracted by using compression-shear hydraulic servo machine and the characteristic values of the transverse shear load-displacement curve were extracted, which were used to be comparative analysis their mechanical properties. The results showed that with the increase of the axial compression ratio, the lateral shear load, shear peak displacement and residual load of the two kinds of concrete are all increased, and the light aggregate concrete is relatively more obvious. From the residual load analysis, there were stable friction coefficient between the shear failure surfaces and the friction coefficient of the lightweight aggregate concrete was obviously higher than that of ordinary concrete. Accor-ding to the mathematical return of two kinds of concrete, axial load and shear peak load, axial load and residual load were linear relationship. The failure criterion of the two kinds of concrete with different analytic properties were obtained by using the octahedral space stress. The analytical formula could respond to the failure law of the two concrete compression-shear composite forces well which provide favorable value for engineering application research.
Key words:  ordinary concrete    lightweight aggregate concrete    compression-shear force    experimental analysis    failure criterion
                    发布日期:  2019-01-23
ZTFLH:  TU43  
基金资助: 国家重点研发计划项目(2016YFC0401704);国家自然科学基金重点项目(51539006)
通讯作者:  黄侨:通信作者,男,1958年生,教授,博士研究生导师,主要从事组合结构与桥梁养护管理 E-mail:qhuanghit@126.com   
作者简介:  余振鹏:男,1990年生,博士研究生,主要从事混凝土强度理论研究 E-mail:15751871206@163.com
引用本文:    
余振鹏, 黄侨, 谢兴华, 卢斌. 普通与轻集料砼压-剪复合受力性能试验研究[J]. 材料导报, 2018, 32(24): 4269-4275.
YU Zhenpeng, HUANG Qiao, XIE Xinghua, LU Bin. Comparative Study on Compressive-Shear Behavior of Ordinary Concrete and Lightweight Aggregate Concrete. Materials Reports, 2018, 32(24): 4269-4275.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.011  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4269
1 过镇海.混凝土的强度和变形.试验基础和本构关系[M].北京:清华大学出版社,1997.
2 Teng Zhenchao, Zhao Tianjia. Analysis of mechanical properties of cross-shaped section columns[J].Journal of Chongqing University of Technology(Natural Science),2017,31(6):78(in Chinese).
滕振超,赵添佳.十字形柱的力学性能分析[J].重庆理工大学学报(自然科学),2017,31(6):78.
3 Sun Qindong, Tang Huaiping. Numerical simulation of gravity type pier and ship oblique collision[J].Journal of Chongqing University of Technology(Natural Science),2018(7):67(in Chinese).
孙钦东,唐怀平.重力式桥墩与船舶斜向碰撞过程数值仿真[J].重庆理工大学学报(自然科学),2018(7):67.
4 Ji Bohai, Fu Zhongqiu, Qu tao, et al. Experimental study on shear capacity of lightweight aggregate concrete[J].Journal of Civil Engineering,2011(12):25(in Chinese).
吉伯海,傅中秋,瞿涛,等.钢管轻集料混凝土抗剪承载力试验研究[J].土木工程学报,2011(12):25.
5 Guo Zhenhai, Zhang Xiuqin, Zhang Dacheng, et al. Experimental study on stress-strain curve of concrete[J].Journal of Building Structures,1982,3(1):1(in Chinese).
过镇海,张秀琴,张达成,等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报,1982,3(1):1.
6 宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
7 Shang S, Song Y. Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete. Construction & Building Mate-rials,2013,40(40):322.
8 Shi L, Wang L, Song Y, et al. Dynamic multiaxial strength and fai-lure criterion of dam concrete[J].Construction & Building Materials,2014,66(1):181.
9 French R, Maher E, Smith M, et al. Direct shear behavior in concrete materials[J].International Journal of Impact Engineering,2017,108:89.
10 Bui T T, Nana W S A, Abouri S, et al. Influence of uniaxial tension and compression on shear strength of concrete slabs without shear reinforcement under concentrated loads[J].Construction & Building Materials,2017,146:86.
11 Wang Zhiliang, Yang Dong, Wu Lipeng.Study on shear failure of ultra-short steel fiber reinforced concrete[J].Journal of Concrete,2010(11):101(in Chinese).
王志亮,阳栋,吴立朋.超短钢纤维增强混凝土压剪破坏试验研究[J].混凝土,2010(11):101.
12 Song Yupu, Wen Wei, Wang Huaoliang. Analysis of compressive shear strength of roller compacted concrete[J].Journal of Hydraulic Engineering and Engineering,2012,10(06):44(in Chinese).
宋玉普,闻伟,王怀亮.碾压混凝土压剪强度分析[J].水利与建筑工程学报,2012,10(06):44.
13 Baran I J, Nowak M B, Chlopek, J P, et al. Acoustic emission from microcrack initiation in polymer matrix composites in short beam shear test[J].Journal of Nondestructive Evaluation,2018,37(1):1.
14 Arrese A, Mujika F. Influence of bending rotations on three and four-point bend end notched flexure tests[J].Engineering Fracture Mechanics,2008,75(14):4234.
15 Rong C, Shi Q, Zhang T, et al. New failure criterion models for concrete under multiaxial stress in compression[J].Construction & Building Materials,2018,161:432.
[1] 李富荣, 余振鹏, 孙厚超. 普通混凝土基本受力形态动力性能试验研究[J]. 材料导报, 2019, 33(12): 1995-2001.
[2] 余自若, 沈捷, 贾方方, 安明喆. 超高性能混凝土与普通混凝土的黏结抗冻性能*[J]. CLDB, 2017, 31(23): 138-144.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed