Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 138-144    https://doi.org/10.11896/j.issn.1005-023X.2017.023.020
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土与普通混凝土的黏结抗冻性能*
余自若1, 沈捷1, 贾方方2, 3, 安明喆1
1 北京交通大学土木建筑工程学院,北京100044;
2 北京市建筑工程研究院有限责任公司,北京市功能性高分子建筑材料工程技术研究中心,北京 100039;
3 北京交通职业技术学院路桥系,北京 102200
Bonding Performances of Ultra High Performance Concrete to Normal Concrete Under Freeze-Thaw Cycle
YU Ziruo1, SHEN Jie1, JIA Fangfang2, 3, AN Mingzhe1
1 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044;
2 Beijing Engineering Research Center of Architectural Functional Macromolecular Materials, Beijing Building Construction Research Institute, Co., Ltd., Beijing 100039;
3 Road and Bridge Department, Beijing Jiaotong Vocational Technical College, Beijing 102200
下载:  全 文 ( PDF ) ( 1261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对147个超高性能混凝土与普通混凝土的 100 mm×100 mm×100 mm立方体黏结试件进行了冻融循环后的黏结性能研究,测量了冻融后试件的相对动弹性模量、质量损失率以及劈裂抗拉强度,研究了超高性能混凝土中的钢纤维掺量、普通混凝土的强度等级、黏结面形式、试件的浇筑方向等因素对黏结试件抗冻性能的影响。结果表明,冻融循环结束后,所有黏结试件中的超高性能混凝土部分都没有出现损伤,超高性能混凝土可以作为普通混凝土结构的理想外围护材料;随着冻融循环次数的增加,黏结试件的相对动弹性模量逐渐减小,质量损失率先降低后增加,黏结试件的劈裂抗拉强度线性下降;影响黏结试件冻融后劈裂抗拉强度下降速度的关键因素是超高性能混凝土中的钢纤维掺量和黏结面的形式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余自若
沈捷
贾方方
安明喆
关键词:  超高性能混凝土  普通混凝土  黏结性能  冻融循环    
Abstract: 147 ultra high performance concrete-normal concrete bonded cubes with dimension of 100 mm × 100 mm × 100 mm were tested to investigate the bonding performance under freeze-thaw cycle test. The relative dynamic elastic modulus, mass loss rate and splitting tensile strength of specimens were measured after freeze-thaw cycle. The effects of steel fibers in ultra high performance concrete, the strength of normal concrete, the form of bonding surface and the casting direction of concrete on the freeze-thaw resistance of bonded specimens were studied. The results show that the ultra high performance concretes in all bonded specimens remain undamaged after the freeze-thaw cycle, and the ultra high performance concrete can be applied as an ideal external enclosure material for normal concrete structures. With the increase of the freeze-thaw cycles, the relative dynamic elastic modulus of specimens are decreased gradually, the mass loss rates are decreased first and then increased, and the splitting tensile strengths are decreased linearly. The key factors that affect the rate of strength decline of the bonded specimens under freeze-thaw cycle are the contents of steel fiber in ultra high performance concrete and the form of bonding surface.
Key words:  ultra high performance concrete    normal concrete    bonding performance    freeze-thaw cycle
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51108019; 51578049); 河北省大型结构健康诊断与控制实验室开放课题基金(201506)
作者简介:  余自若:女, 1980年生,博士,副教授,主要从事超高性能混凝土的力学行为及工程应用研究 E-mail:zryu@bjtu.edu.cn
引用本文:    
余自若, 沈捷, 贾方方, 安明喆. 超高性能混凝土与普通混凝土的黏结抗冻性能*[J]. CLDB, 2017, 31(23): 138-144.
YU Ziruo, SHEN Jie, JIA Fangfang, AN Mingzhe. Bonding Performances of Ultra High Performance Concrete to Normal Concrete Under Freeze-Thaw Cycle. Materials Reports, 2017, 31(23): 138-144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.020  或          http://www.mater-rep.com/CN/Y2017/V31/I23/138
1 Metha P K, Monteiro P J M. Concrete: Microstructure, properties and materials (third edition)[M]. New York: McGraw-Hill Professional, 2005:659.
2 Richard P, Cheyrezy M. Composition of reactive powder concrete[J]. Cem Concr Res, 1995, 25(7):1501.
3 Wang Y, An M Z, Yu Z R, et al. Research on the durability of rea-ctive powder concrete[J]. Concrete, 2013(8):12(in Chinese).
王月, 安明喆, 余自若,等. 活性粉末混凝土耐久性研究现状综述[J]. 混凝土, 2013(8):12.
4 Ji W Y, Guo M L, Li W W. Interface mechanical behavior of RPC-NC composite beam[J]. China Railway Sci, 2016, 37(1):46 (in Chinese).季文玉, 过民龙, 李旺旺. RPC-NC组合梁界面受力性能研究[J]. 中国铁道科学, 2016, 37(1):46.
5 Zhong Y M. Study on RPC as permanent formwork of concrete engineering[D]. Beijing: Beijing Jiaotong University, 2005(in Chinese).
钟咏梅.活性粉末混凝土做永久性模板研究[D].北京:北京交通大学,2005.
6 Tayeh B A, Bakar B H A, Johari M A M, et al. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay[J]. Constr Build Mater, 2012, 36:538.
7 Qu W J, Gu J J, Qin Y H. Experimental study on the durability of RPC-NC combined section beams[J]. Struct Eng, 2009, 25(1):106(in Chinese).
屈文俊, 顾俊颉, 秦宇航. RPC-NC组合截面梁的耐久性试验研究[J]. 结构工程师, 2009, 25(1):106.
8 Jia F F, He K, Wang W J, et al. Splitting tensile bonding strength of reactive powder concrete to normal concrete[J]. J China Railway Soc, 2016, 38(3):127(in Chinese).
贾方方, 贺奎, 王万金,等. 活性粉末混凝土与NC黏结劈拉性能[J]. 铁道学报, 2016, 38(3):127.
9 Lee M G, Wang Y C, Chiu C T. A preliminary study of reactive powder concrete as a new repair material[J]. Constr Building Mater, 2007, 21(1):182.
10 Green M F, Bisby L A, Beaudoin Y, et al. Effect of freeze-thaw cycles on the bond durability between fibre reinforced polymer plate reinforcement and concrete[J]. Canadian J Civil Eng, 2000, 27(5): 949.
11 Plum D R. The behavior of polymer materials in concrete repair and factors influencing selection[J]. Struct Eng, 1990, 68(17):337.
12 Wang Y. Durability of reactive powder concrete under coupling action of freeze-thaw cycling and chlorid erosion[D]. Beijing: Beijing Jiaotong University, 2016(in Chinese).
王月. 冻融循环与氯离子侵蚀耦合作用下活性粉末混凝土耐久性研究[D]. 北京: 北京交通大学, 2016.
[1] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[2] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[3] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[4] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[5] 李富荣, 余振鹏, 孙厚超. 普通混凝土基本受力形态动力性能试验研究[J]. 材料导报, 2019, 33(12): 1995-2001.
[6] 余振鹏, 黄侨, 谢兴华, 卢斌. 普通与轻集料砼压-剪复合受力性能试验研究[J]. 材料导报, 2018, 32(24): 4269-4275.
[7] 关虓, 邱继生, 潘杜, 郑娟娟, 王民煌. 冻融环境下煤矸石混凝土损伤度评估方法研究[J]. 材料导报, 2018, 32(20): 3546-3552.
[8] 南雪丽, 王超杰, 刘金欣, 韩博, 杨蓝蓝. 冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 177-181.
[9] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[10] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[11] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[12] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[13] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[14] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[15] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed