Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21050266-8    https://doi.org/10.11896/cldb.21050266
  高分子与聚合物基复合材料 |
基于分子动力学的生物质油改性沥青相容性研究
丁鹤洋1,2, 汪海年1,*, 徐宁1, 王宠惠2, 屈鑫1, 尤占平3
1 长安大学公路学院,西安 710064
2 德国亚琛工业大学土木工程学院,亚琛 52074
3 美国密歇根理工大学土木与环境工程系院,霍顿 MI 499331
Research on the Compatibility of Bio-oil Modified Asphalt Binder Based on Molecular Dynamics
DING Heyang1,2, WANG Hainian1,*, XU Ning1, WANG Chonghui2, QU Xin1, YOU Zhanping3
1 School of Highway, Chang'an University, Xi'an 710064, China
2 Institute of Highway Engineering, RWTH Aachen University, Aachen, 52074, Germany
3 Department of Civil and Environmental Engineering, Michigan Technological University, Houghton MI 49931, USA
下载:  全 文 ( PDF ) ( 3916KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究生物质油改性沥青的相容稳定性,基于分子动力学方法构建了基质沥青、生物质油改性沥青和SBS改性沥青模型,依据热力学判据、Flory-Huggins 相互作用参数和分子极性对生物质油改性沥青和SBS改性沥青的相容性进行定量对比分析。借助荧光显微镜观测两类改性沥青以进一步验证和支持数值模拟结果。研究发现,在 158 K 和 294 K 处,SBS 改性沥青出现了两次明显的玻璃化状态转变,而生物质油改性沥青仅在262 K处出现一次玻璃化状态转变;生物质油的溶解度参数与基质沥青的溶解度参数更为接近;SBS-基质沥青的相互作用参数(0.689 1)高于生物质油-基质沥青(0.612 0);生物质油的电偶极矩高于 SBS改性剂,因而生物质油-基质沥青体系会产生强烈的吸引;SBS 结构为直链线性,难以与沥青质等多环芳烃结构发生相互作用;SBS 改性沥青的荧光显微结构中出现大规模荧光点,相态分离明显,而生物质油沥青荧光点少,相态均一。综合分析,生物质与基质沥青之间表现出更好的相容稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁鹤洋
汪海年
徐宁
王宠惠
屈鑫
尤占平
关键词:  沥青路面  相容性  分子动力学  荧光显微镜  生物质油  改性沥青    
Abstract: To investigate the compatibility of bio-oil modified asphalt binder, the matrix asphalt binder, bio-oil modified asphalt binder and SBS modified asphalt binder were constructed based on molecular dynamics, through the perspectives including thermodynamic parameters, Flory-Huggins interaction parameters and molecular polarity, quantitative analysis of the compatibility of bio-oil modified asphalt binder and SBS modified asphalt binder was conducted. Two types of modified asphalt binder can be also observed with the aid of fluorescence microscopy to further validate and support the numerical simulation results. It was found that there was an obvious secondary state transition of vitrification for SBS modified asphalt binder at 158 K and 294 K, while there was once time for bio-oil modified asphalt binder at 262 K;the solubility parameter of bio-oil was clo-ser to that of matrix asphalt binder;the Flory-Huggins interaction parameters of SBS modified asphalt binder (0.689 1) was higher than that of bio-oil asphalt binder (0.612 0);the electric dipole moment of bio-oil was higher than SBS modifier, thus there was a strong attraction and asso-ciative force in the bio-oil-matrix asphalt binder system. Because of the linear structure existed in SBS modifier, it was difficult to interact with asphaltenes and other polycyclic aromatic hydrocarbons;the SBS modified asphalt binder showed massive fluorescent spots and significant phase separation, while the bio-oil modified asphalt binder showed fewer fluorescent spots and a homogeneous phase state. Comprehensive analysis shows that the compatibility between bio-oil and matrix asphalt binder is better than SBS modifier.
Key words:  asphalt pavement    compatibility    molecular dynamics    fluorescence microscope    bio-oil    modified asphalt binder
发布日期:  2023-02-08
ZTFLH:  U414  
基金资助: 国家重点研发计划(2021YFB2601000);国家自然科学基金(51878063;52078048;52008029)
通讯作者:  *汪海年,长安大学公路学院党委书记、教授和博士研究生导师。2007年长安大学道路与铁道工程专业博士毕业。2010年至2011年在密歇根理工大学作访问学者。研究方向包括特殊区域道路工程设计理论与方法、道路材料细观表征与建模、环保铺面材料研发与评价等,发表论文130余篇,其中SCI检索60余篇。   
作者简介:  丁鹤洋,2019年7月、2022年7月分别于安徽理工大学和长安大学获得工学学士学位和硕士学位。硕士指导教师为汪海年教授。主要研究方向为沥青材料的微观结构探测与数值模拟。
引用本文:    
丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
DING Heyang, WANG Hainian, XU Ning, WANG Chonghui, QU Xin, YOU Zhanping. Research on the Compatibility of Bio-oil Modified Asphalt Binder Based on Molecular Dynamics. Materials Reports, 2023, 37(2): 21050266-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050266  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21050266
1 Zhang R, Wang H N, Gao J F, et al. Construction and Building Materials, 2017, 144, 99.
2 Gao J F, Wang H N, You Z P, et al. Applied Sciences, 2018, 8(6), 919.
3 Fini E H, Kalberer E W, Shahbazi A, et al. Journal of Materials in Civil Engineering, 2011, 23(11), 1506.
4 Martin-Martinez F J, Fini E H, Buehler M J. RSC Advances, 2015, 5(1), 753.
5 Zadshir M, Oldham D J, Hosseinnezhad S, et al. Construction and Building Materials, 2018, 190, 392.
6 Abdel R M, Williams R C. International Journal of Pavements, 2010, 9, 58.
7 Yang X, You Z P, Dai Q L, et al. Construction and Building Materials, 2014, 51, 424.
8 Mohammad L N, Elseifi M, Cooper S B, et al. In: Conference Record of the 2013 Airfield & Highway Pavement. Los Angeles, 2013, pp. 128.
9 Mirhosseini A F, Kavussi A, Tahami S A, et al. Journal of Materials in Civil Engineering, 2018, 30(8), 04018176.
10 He L P. Reserch on the viscoelastic characteritistic and high temperature properties based DMA of rubber asphalt. Ph. D. Thesis, Chang'an University, China, 2014 (in Chinese).
何立平. 基于DMA方法的橡胶沥青粘弹特性和高温性能研究. 博士学位论文, 长安大学, 2014.
11 Shen C, Li R, Pei J, et al. Applied Sciences, 2020, 10(1), 91.
12 Zhao W H, Xie X B, Li G H, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3709(in Chinese).
赵文辉, 谢祥兵, 李广慧, 等. 硅酸盐通报, 2020, 39(11), 3709.
13 Liang M, Xin X, Fan W, et al. Journal of Materials in Civil Engineering, 2019, 31(12), 04019288.
14 Yu R, Liu X, Zhang M, et al. Construction and Building Materials, 2017, 156, 284.
15 Dong F, Yu X, Chen J, et al. Journal of Applied Polymer Science, 2017, 134, 44798.
16 Chen Z, Zhang H, Duan H, et al. Construction and Building Materials, 2020, 260, 119835.
17 Xu J, Xia T, Li Y, et al. Petroleum Science and Technology, 2016, 34(23), 1867.
18 Nie X, Hou T, Yao H, et al. Petroleum Science and Technology, 2019, 37(14), 1704.
19 Guo F, Zhang J, Pei J, et al. Frontiers of Structural and Civil Engineering, 2020, 14(2), 435.
20 Ren Y X, Hao P W, Zhao C Z, et al. China Journal of Highway and Transport, 2020, 33(10), 178(in Chinese).
任永祥, 郝培文, 赵超志, 等. 中国公路学报, 2020, 33(10), 178.
21 Su M M, Si C, Zhang Z, et al. Fuel, 2020, 263, 116777.
22 Zhu J Y, He Z Y. Journal of Highway and Transportation Research and Denelopment, 2016, 33 (1), 34(in Chinese).
朱建勇, 何兆益. 公路交通科技, 2016, 33(1), 34.
23 Wang L, Zhang L, Liu Y. Journal of Building Materials, 2018, 21(4), 689(in Chinese).
王岚, 张乐, 刘旸. 建筑材料学报, 2018, 21(4), 689.
24 Li C X, Fan S Y, Xu T. Journal of Materials in Civil Engineering, 2021, 33(8), 04021207.
25 Long Z W, Zhou S J, Jiang S T, et al. Journal of Molecular Modeling, 2021, 27(3), 81.
26 Rogel E. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 104(1), 85.
27 Corbett L W. Analytical Chemistry, 1969, 41(4), 576.
28 Li D D, Greenfield M L. Energy & Fuels, 2011, 25(8), 3698.
29 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
30 Wang H N, Ding H Y, Feng P N, et al. Journal of Traffic and Transportation Engineering, 2020, 20(2), 1(in Chinese).
汪海年, 丁鹤洋, 冯珀楠, 等. 交通运输工程学报, 2020, 20(2), 1.
31 He L, Li G, Lyu S, et al. Construction and Building Materials, 2020, 254, 119225.
32 Liu J, Yu B, Hong Q. Construction and Building Materials, 2020, 255, 119332
33 Pahlavan F, Mousavi M, Hung A M, et al. Fuel, 2018, 212, 593.
34 Pahlavan F, Samieadel A, Deng S G, et al. Acs Sustainable Chemistry & Engineering, 2019, 7(18), 15514.
35 Ding Y J, Tang B M, Zhang Y, et al. Journal of Materials in Civil Engineering, 2015, 27(8), C4014004.
36 Wang L, Guo N S, Wen Y K, et al. Materials Reports B: Research Papers, 2020, 34(9), 18065(in Chinese).
王淋, 郭乃胜, 温彦凯, 等. 材料导报:研究篇, 2020, 34(9), 18065.
37 Liu X, Wu S P, Li G, et al. Materials (Basel, Switzerland), 2015, 8(7), 4022.
38 Wang C C. Preparation, mechanism and properties of carbon nanomaterials modified asphalt. Master's Thesis, Chang'an University, China, 2017 (in Chinese).
王成超. 碳纳米材料改性沥青的制备、机理与性能研究. 硕士学位论文, 长安大学, 2017.
39 Ge L. Study on performance of FLEX 20 modified asphalt and its mixture based on chinese-french standards. Master's Thesis, Chang'an University, China, 2019 (in Chinese).
格兰. 基于中法两国标准的FLEX 20改性沥青及混合料性能研究. 硕士学位论文, 长安大学, 2019.
40 Qiao M. The research on performance of sodium alginate / SBS composite modified asphalt and the mixture. Master's Thesis, Changsha University of Science & Technology, China, 2019 (in Chinese).
乔猛. 海藻酸钠/SBS复合改性沥青及其混合料的性能研究. 硕士学位论文, 长沙理工大学, 2019.
41 Dong G. Performance and mechanism of asphalt modified with polyphosphoric acid and polyphosphoric acid/polymer. Ph. D. Thesis, Chang' an University, China, 2018 (in Chinese).
董刚. 多聚磷酸及多聚磷酸/聚合物复合改性沥青的性能和机理分析. 博士学位论文, 长安大学, 2018.
42 Qi B. Research on properties of polyurethane (PU) modified asphalt and mixture for deck pavement. Chang'an University, Master's Thesis, Chang'an University, China, 2018 (in Chinese).
祁冰. 适用于桥面铺装的聚氨酯(PU)改性沥青及混合料性能研究. 硕士学位论文, 长安大学, 2018.
43 Ban X Y. Study on preparation and properties of polyurethane (PU) modified asphalt. Master's Thesis, Chang'an University, China, 2017 (in Chinese).
班孝义. 聚氨酯(PU)改性沥青的制备与性能研究. 硕士学位论文, 长安大学, 2017.
44 Lipson J E G. Macromolecules, 2020, 53(17), 7219.
45 Fox T G. Bulletin of the American Physical Society, 1956, 1, 123.
46 Chu L, Luo L, Fwa T F. Construction and Building Materials, 2019, 225, 1.
47 You L, Spyriouni T, Dai Q, et al. Construction and Building Materials, 2020, 265, 120358.
48 Zhu J, Zhou C. Materials Research Express, 2019, 6(11), 115110.
49 Sharma P, Roy S, Karimi-Varzaneh H A. Macromolecular Theory and Simulations, 2019, 28(4), 1900003.
50 Qu J L, Zhou L X, Li Q F. Polymer Bulletin, 2020(10), 66(in Chinese).
曲家利, 周丽霞, 李齐方. 高分子通报, 2020(10), 66.
51 Inger Martínez de Arenaza, Magdalena Obarzanek-Fojt, Jose-Ramon Sarasua, et al. Biomedical Materials, 2015, 10(4), 045003.
52 Fu Y, Liao L, Lan Y, et al. Journal of Molecular Structure, 2012, 1012, 113.
53 Inger Martínez de Arenaza, Emiliano Meaurio, Jose-Ramon Sarasua. In:Polymerization, ed., IntechOpen, London, 2012, pp. 29.
54 Jäger A, Lackner R, Eisenmenger-Sittner C, et al. Road Materials and Pavement Design, 2004, 5(sup1), 9.
55 Huang M, Zhang H, Gao Y, et al. International Journal of Pavement Engineering, 2019, 22(3), 1.
56 Xu N. Study on pavement performance and modification mechanism of SBS modified asphalt mixture by wet and dry pre-mixing process. Master's Thesis, Chang'an University, China, 2019 (in Chinese).
徐宁. 湿法和干法SBS改性沥青混合料路用性能及改性机理对比研究. 硕士学位论文, 长安大学, 2019.
57 Yan C, Huang W, Xiao F, et al. Road Materials and Pavement Design, 2018, 20(7), 1586.
58 Ji J, Luo X H, Liu D L. Advanced Materials Research, 2011, 233, 1774.
[1] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[2] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[3] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[4] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[5] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[6] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[7] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[8] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[9] 李文博, 张双侠, 史倩倩, 于明明. 新疆严寒区UV老化下的沥青路面抗损劣性能研究[J]. 材料导报, 2022, 36(21): 21100120-6.
[10] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[11] 屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
[12] 王凤, 肖月, 崔培德, 磨炼同, 方明镜. 集料形态特征对沥青混合料性能影响规律的研究进展[J]. 材料导报, 2022, 36(17): 21030063-13.
[13] 金娇, 刘墨晗, 刘帅, 陈柏臻, 刘欣宇. 基于生态路面减排理念下的CeO2柱撑蒙脱土改性沥青及其催化性能研究[J]. 材料导报, 2022, 36(16): 22040157-7.
[14] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[15] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed