Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20100248-5    https://doi.org/10.11896/cldb.20100248
  无机非金属及其复合材料 |
单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究
田继挺1, 冯琦杰1, 郑健1, 周韦1, 李欣2,3, 梁晓波2,3, 刘德峰2,3
1 中国工程物理研究院核物理与化学研究所,四川 绵阳 621900
2 中国航空工业集团公司北京长城航空测控技术研究所,北京 101111
3 状态监测特种传感技术航空科技重点实验室,北京 101111
Molecular Dynamics Simulations of Radiation-induced Swelling and Amorphization in a Single Crystal of 3C-SiC
TIAN Jiting1, FENG Qijie1, ZHENG Jian1, ZHOU Wei1, LI Xin2,3, LIANG Xiaobo2,3, LIU Defeng2,3
1 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
2 AVIC Beijing Changcheng Aviation Measurement and Control Technology Research Institute, Beijing 101111, China
3 Key Laboratory of Science and Technology on Special Condition Monitoring Sensor Technology, Beijing 101111, China
下载:  全 文 ( PDF ) ( 4833KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硅(SiC)材料在核能材料和半导体器件等领域有广泛的潜在应用,其辐照效应一直备受关注。结合动态恒温墙技术和恒温恒压热浴算法,本工作基于经典分子动力学模拟方法构建了单晶立方碳化硅(3C-SiC)的连续辐照模型,并研究了室温下连续几千次碰撞级联引起的SiC晶体损伤(对应的辐照剂量高达1 dpa),首次从微观上呈现了SiC从无缺陷到损伤饱和(彻底非晶化、肿胀达到极值)的完整过程。模拟发现持续辐照使得SiC密度明显降低,并储存了大量能量,其数值与文献中的实验结果比较接近。SiC非晶化过程可分为缓慢增长、快速增长、缓慢增长、完全非晶四个阶段,完全非晶的辐照剂量约为0.4 dpa,与文献中的第一性原理结果和实验结果非常接近。模拟得到的SiC肿胀与辐照剂量的关系,在0.1 dpa以下与实验结果比较接近,在0.1 dpa以上则明显偏高,这可能源自模拟与实验在剂量率上的巨大差异。这些结果表明,本文构建的计算模型比较合理,未来可用于对SiC辐照损伤微观机理的进一步研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田继挺
冯琦杰
郑健
周韦
李欣
梁晓波
刘德峰
关键词:  碳化硅  分子动力学  碰撞级联  肿胀  非晶化    
Abstract: Silicon carbide (SiC) materials have many important potential applications in nuclear energy systems and semiconductor materials, and their radiation effects are always of high interest among the material science community. Based on classical molecular dynamics simulations, here we combine adaptive constant-temperature wall (CTW) technique and isobaric thermostat to successfully develop a computational model for continuous irradiation damage in cubic 3C-SiC. Using this model, we investigate the amorphization and swelling in a single crystal of 3C-SiC under repeated particle bombardments up to 1 dpa, for the first time exhibiting the complete process of the crystal from no defects to damage saturation. It is observed that the density of SiC decrease upon continuous irradiation, with a significant amount of stored energy which is in line with the value reported in literature. We also find that the radiation-induced amorphization can be roughly separated into four stages, slow increase, fast increase, slow increase, and complete amorphization. The complete amorphization occurs at about 0.4 dpa, in line with first-principles results and experimental data in the literature. The simulated swelling as a function of dose in SiC is in good agreement with previous experimental results below 0.1 dpa, but seems too high above 0.1 dpa, which may originate from the huge difference in the dose rates of simulation and of experiments. These results indicate that our model is reasonable, and is useful for future studies on the microscopic damage mechanisms in SiC.
Key words:  silicon carbide    molecular dynamics    collision cascade    swelling    amorphization
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  O469  
通讯作者:  tianjiting@pku.edu.cn20100248-1   
作者简介:  田继挺,中国工程物理研究院核物理与化学研究所,助理研究员。2012年和2017年从北京大学依次获得物理学学士和博士学位。主要从事材料辐照效应的计算机模拟研究。
引用本文:    
田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
TIAN Jiting, FENG Qijie, ZHENG Jian, ZHOU Wei, LI Xin, LIANG Xiaobo, LIU Defeng. Molecular Dynamics Simulations of Radiation-induced Swelling and Amorphization in a Single Crystal of 3C-SiC. Materials Reports, 2022, 36(2): 20100248-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100248  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20100248
1 Snead L L, Nozawa T, Katoh Y, et al. Journal of Nuclear Materials, 2007, 371, 329.
2 Terrani K A. Journal of Nuclear Materials, 2018, 501, 13.
3 Zinkle S J, Was G. Acta Materialia, 2013, 61, 735.
4 Zinkle S J, Snead L L. Annual Review of Materials Research, 2014, 44, 241.
5 Katoh Y, Snead L L, Szlufarska I, et al. Current Opinion in Solid State and Materials Science, 2012, 16, 143.
6 Nordlund K, Zinkle S J, Sand A E, et al. Journal of Nuclear Materials, 2018, 512, 450.
7 Nordlund K, Djurabekova F. Journal of Computational Electronics, 2014, 13, 122.
8 Jin E Z, Niu L S, Lin E Q, et al. Journal of Applied Physics, 2012, 111, 104322.
9 Liu C, Szlufarska I. Journal of Nuclear Materials, 2018, 509, 392.
10 Fung K Y, Lin Y R, Yu P J, et al. Journal of Nuclear Materials, 2018, 508, 292.
11 Gao F, Weber W J. Physical Review B, 2002, 66, 024106.
12 Debelle A, Boulle A, Chartier A, et al. Physical Review B, 2014, 90, 174112.
13 Plimpton S. Journal of Computational Physics, 1995, 117, 1.
14 Devanathan R, Rubia T D, Weber W J. Journal of Nuclear Materials, 1998, 253, 47.
15 Tian J, Zhou W, Feng Q, et al. Applied Surface Science, 2018, 435, 65.
16 Tian J. Chinese Physics B, 2021, 30(2), 026102.
17 Norgett M, Robinson M, Torrens I. Nuclear Engineering and Design, 1975, 33, 50.
18 Krishnan N A, Wang B, Yu Y, et al. Physical Review X, 2017, 7, 031019.
19 Zang H, Guo D X, Shen T L, et al. Journal of Nuclear Materials, 2013, 433, 378.
20 Snead L L, Katoh Y, Koyanagi T, et al. Journal of Nuclear Materials, 2016, 471, 92.
21 Marasa E, Trushin O, Stukowski A, et al. Computer Physics Communications, 2016, 205, 13.
22 Stukowski A. Modelling and Simulation in Materials Science and Enginee-ring, 2010, 18, 015012.
23 Derlet P M, Dudarev S L. Physical Review Materials, 2020, 4, 023605.
24 Snead L L, Katoh Y, Koyanagi T, et al. Journal of Nuclear Materials, 2019, 514, 181.
25 Jiang C, Zheng M J, Morgan D, et al. Physical Review Letters, 2013, 111, 155501.
26 Zang H, Huang Z S, Li T, et al. Acta Physica Sinica, 2017, 66(6), 066104 (in Chinese).
臧航, 黄智晟, 李涛, 等.物理学报, 2017, 66(6), 066104.
[1] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[2] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[3] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[4] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[5] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[6] 李连奇, 杨占兵. 奥氏体不锈钢辐照肿胀和偏析的研究进展[J]. 材料导报, 2021, 35(5): 5122-5129.
[7] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[8] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[9] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[10] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[11] 寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
[12] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[13] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[14] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[15] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed