Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20110075-6    https://doi.org/10.11896/cldb.20110075
  金属与金属基复合材料 |
基于外场调控的智能热控超材料
杜益嘉1, 王盼1, 肖诚禹1, 唐道远2, 徐建明2, 周涵1
1 上海交通大学金属基复合材料国家重点实验室,上海 200240
2 上海空间电源研究所空间电源技术国家重点实验室,上海 200245
Smart Thermal Control Metamaterials Manipulated by External Fields
DU Yijia1, WANG Pan1, XIAO Chengyu1, TANG Daoyuan2, XU Jianming2, ZHOU Han1
1 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
2 State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-sources, Shanghai 200245, China
下载:  全 文 ( PDF ) ( 6292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料因其结构可设计性和优异的物理性能成为近年来的研究热点。热学超材料因能针对性设计红外发射率和反射率等热性能而备受关注。近年来热学超材料朝着“智能化”和“多功能”的趋势发展,智能热调控超材料是实现高效热控的重要途径。
以相变涂层为主的传统智能热控材料具有精度低、调控幅度小和可设计性差等局限性。超结构设计能使材料实现理想的电磁特性,并通过表面等离激元等不同的损耗机制实现特定波段的完美吸收。在此基础上,引入相变材料或可重构表面实现的智能热控超材料能够快速、精准地实现热性能的大幅调控。
智能热控超材料可实现热场、电场、力场和其他外场等多方式调控。合理的超结构设计能够使材料在热场的被动调控下同时实现吸收率和吸收峰峰位稳定调谐。基于电场调控的材料具有更高的调制精度和快速响应能力。生物启迪的力学热控超材料因其设计简单和柔性的优势而有望大面积应用。此外,基于磁、光等其他外场实现热调控也有相关报道。
本文归纳了智能热控超材料的研究现状,首先简单介绍了完美吸收和智能热控的相关概念,从结构设计和损耗机理的角度出发,分析了基于不同外场智能热控超材料的调控途径和研究进展,最后总结了智能热控超材料目前面临的挑战并展望其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜益嘉
王盼
肖诚禹
唐道远
徐建明
周涵
关键词:  智能热控  超材料  表面等离激元  结构设计  完美吸收    
Abstract: Metamaterials have been extensively investigated due to their strong designability of structure and various excellent physical properties.Thermal metamaterials have attracted worldwide attention because of their ability to design thermal emissivity and reflectance. In recent years, thermal metamaterials have been developing towards the trends of intelligence and multifunction. Therefore, smart metamaterials have become an important way to achieve efficient thermal control.
Traditional smart thermal control materials based on phase change coatings have limitations including low control precision, limited range of regulation and poor designability. Ideal electromagnetic properties can be attained by structural design of metamaterials, and perfect absorption can be achieved by different loss mechanisms such as surface plasmon polaritons. In addition, thermal properties can be quickly and precisely controlled by smart metamaterials combined with phase change materials or reconfigurable surfaces.
Smart thermal control metamaterials can be tuned by various external fields including thermal, electrical and mechanical fields. Absorption amplitude and peak can be tuned simultaneously by metamaterials with designed structures under thermal field. High modulation accuracy and fast response ability can be achieved by smart metamaterials manipulated by the electric field. Biologically inspired mechanically controlled metamate-rials have been expected to be widely used because of their flexibility and fabrication simplicity. Besides, magnetically and optically controlled smart metamaterials have also been investigated.
This review summarizes the research status of smart thermal control metamaterials. First, we introduce basic concepts of perfect absorption and smart thermal control. We then analyze research progress and tuning approaches of smart metamaterials manipulated by different external fields from the perspective of structural design and loss mechanisms. Finally, we summarize the current challenges and prospect future development directions of smart thermal control metamaterials.
Key words:  smart thermal control    metamaterials    surface plasmon polaritons    structural design    perfect absorption
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51772191)
通讯作者:  hanzhou_81@sjtu.edu.cn20110075-1   
作者简介:  杜益嘉,2018年6月毕业于哈尔滨工业大学,获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生,在周涵老师的指导下开展研究。目前主要研究领域为智能热控超材料。周涵,上海交通大学材料学院及金属基复合材料国家重点实验室教授、博士研究生导师。2010年获得上海交通大学-美国加州大学戴维斯分校联合培养博士学位,2012—2013年在日本国立物质材料研究所叶金花教授课题组从事博后工作,2013—2014年在德国马普所胶体与界面研究所Markus Antonietti教授团队从事洪堡学者研究。主要研究方向为仿生材料与智能材料、超材料、热调控材料。
引用本文:    
杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
DU Yijia, WANG Pan, XIAO Chengyu, TANG Daoyuan, XU Jianming, ZHOU Han. Smart Thermal Control Metamaterials Manipulated by External Fields. Materials Reports, 2022, 36(2): 20110075-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110075  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20110075
1 Liu Y, Zhang X. Chemical Society Review, 2011, 40(5), 2494.
2 Kadic M, Buckmann T, Schittny R, et al. Reports of Progress in Physics, 2013, 76(12), 126501.
3 Cummer S A, Christensen J, Alù A. Nature Reviews Materials, 2016, 1(3), 16001.
4 Blees M K, Barnard A W, Rose P A, et al. Nature, 2015, 524, 204.
5 Pendry J B, Schurig D, Smith D R. Science, 2006, 5781(312), 1780.
6 Fan C Z, Gao Y, Huang J P. Applied Physics Letters, 2008, 92(25), 251907.
7 Li T, Zhai Y, He S, et al. Science, 2019, 364(6442), 760.
8 Kim T, Bae J Y, Lee N, et al. Advanced Functional Materials, 2019, 29(10), 1807319.
9 Shaltout A M, Shalaev V M, Brongersma M L. Science, 2019, 364(6441), t3100.
10 Ke Y, Yin Y, Zhang Q, et al. Joule, 2019, 3(3), 858.
11 Sun K, Riedel C A, Wang Y, et al. ACS Photonics, 2017, 5(2), 495.
12 Hossain M M, Jia B, Gu M. Advanced Optical Materials, 2015, 3, 1047.
13 Watts C M, Liu X, Padilla W J. Advanced Materials, 2012, 24, 98.
14 Xiao S, Drachev V P, Kildishev A V, et al. Nature, 2010, 466, 735.
15 Caldwell J D, Lindsay L, Giannini V, et al. Nanophotonics, 2015, 4(1), 44.
16 Dou S, Xu H, Zhao J, et al. Advanced Materials, 2021, 33(6), e2000697.
17 Du K, Cai L, Luo H, et al. Nanoscale, 2018, 10(9), 4415.
18 Cao T, Zhang X, Dong W, et al. Advanced Optical Materials, 2018, 6(16), 1800169.
19 Qu Y, Li Q, Cai L, et al. Light: Science & Applications, 2018, 7, 26.
20 Tittl A, Michel A U, Schäferling M, et al. Advanced Materials, 2015, 27(31), 4597.
21 Wu S, Lai K, Wang C. Scientific Reports, 2018, 8(1), 7684.
22 Chandra S, Franklin D, Cozart J, et al. ACS Photonics, 2018, 5, 4513.
23 Huang J, Xuan Y, Li Q. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(16), 2592.
24 Fan D, Li Q, Xuan Y, et al. Solar Energy Materials and Solar Cells, 2016, 144, 331.
25 Yildirim D U, Ghobadi A, Soydan M C, et al. ACS Photonics, 2019, 6(7), 1812.
26 Ke Y, Wen X, Zhao D, et al. ACS Nano, 2017, 11(7), 7542.
27 Long S, Cao X, Huang R, et al. ACS Applied Materials & Interfaces, 2019, 11(25), 22692.
28 Liu X, Padilla W J. Advanced Materials, 2016, 28(5), 871.
29 Wen R, Granqvist C G, Niklasson G A. Nature Materials, 2015, 14(10), 996.
30 Li Y, van de Groep J, Talin A A, et al. Nano Letters, 2019, 19, 7988.
31 Park J, Kang J, Liu X, et al. Science Advances, 2018, 4(12), t3163.
32 Li Z, Zhou Y, Qi H, et al. Advanced Materials, 2016, 28(41), 9117.
33 Zeng B, Huang Z, Singh A, et al. Light: Science & Applications, 2018, 7(1), 51.
34 Rodrigo D, Limaj O, Janner D, et al. Science, 2015, 349(6244), 165.
35 Ito K, Iizuka H. Journal of Applied Physics, 2016, 120(16), 163105.
36 Kim Y, Wu P C, Sokhoyan R, et al. Nano Letters, 2019, 19(6), 3961.
37 Liang X, Chen M, Guo S, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40810.
38 Liang X, Guo S, Chen M, et al. Materials Horizons, 2017(5), 878.
39 Ge D, Lee E, Yang L, et al. Advanced Materials, 2015, 27(15), 2489.
40 Xu C, Colorado Escobar M, Gorodetsky A A. Advanced Materials, 2020, 32(16), 1905717.
41 Leung E M, Colorado Escobar M, Stiubianu G T, et al. Nature Communications, 2019, 10(1), 1947.
42 Xu C, Stiubianu G T, Gorodetsky A A. Science, 2018, 359, 1495.
43 Luo Z, Evans B A, Chang C. ACS Nano, 2019, 13(4), 4657.
44 Coppens Z J, Valentine J G. Advanced Materials, 2017, 29(39), 1701275.
[1] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[2] 曹忠亮, 郭登科, 林国军, 胡清明, 富宏亚. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21): 21185-21194.
[3] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[4] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[5] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[6] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[7] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[8] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[9] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[10] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[11] 赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
[12] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[13] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[14] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[15] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed