Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20110027-7    https://doi.org/10.11896/cldb.20110027
  金属与金属基复合材料 |
磨粒刮擦铝膜的亚表层磨损机制纳观探究
翁盛槟1, 陈晶晶2, 周建强1, 林晓亮1
1 衢州学院工程实训中心,浙江 衢州 324000
2 宁德师范学院信息与机电工程学院,福建 宁德 352100
Wear Mechanism Analysis in Subsurface for Al Substrate Scraped by Abrasive Particle from Atomic Simulation
WENG Shengbin1, CHEN Jingjing2, ZHOU Jianqiang1, LIN Xiaoliang1
1 Engineering Training Center, Quzhou University, Quzhou 324000, Zhejiang, China
2 School of Information and Mechatronics Engineering, Ningde Normal University, Ningde 352100, Fujian, China
下载:  全 文 ( PDF ) ( 14139KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磨损常是宏观机械装备出现故障和产生噪音的关键诱因及微/纳机电传动装置的失效主因,伴随摩擦产生的粘着会使磨粒聚合为粘结点而影响机械服役期寿命。然而,碰磨中磨损产生内在机制和粘着诱导主因目前尚未被研究清楚。因此,本工作运用经典分子动力学法,对磨粒与金属Al基底碰磨刮擦中的亚表层磨损机理展开研究,并将温度、磨粒尺寸、刮擦速度分别对刮擦表面形貌与变形特征、切向力贡献度、磨屑数额、温度和应力分布的影响进行对比分析。研究表明:基底被磨粒刮擦时经历三个变形阶段,即刮擦初期弹性变形和刮擦中期弹塑性变形及刮擦稳定期塑性去除。其中,刮擦中期弹塑性变形阶段是诱导粘着产生的主要内因,且粘着犁沟力在整个粘着磨损过程中起主导作用,而磨屑原子对切向力的贡献度较小。另外,与磨粒紧密接触区的温度和应力分布都较其它部分要明显更高,且紧密接触区边缘两侧及被刮擦后表面会因温度升高而促使弹塑性变形阶段原子热运动迁移加剧,从而使小磨屑聚集为新粘结点并分布于被刮擦表面。高温下,基底内、外表面出现大量非晶态,这会诱导被刮擦表面出现加工硬化状态,其外部构型表现出与刮擦速度、磨粒尺寸改变所引起的表面形貌变化有显著差异。本研究结果将为碰磨刮擦时的磨损运动行为和粘结点生成机理这两方面的认识提供原子水平见解,并为宏观机械装备、微/纳机械装置减少摩擦磨损提供重要参考价值,也对超精密表面加工技术的发展起到促进作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翁盛槟
陈晶晶
周建强
林晓亮
关键词:  粘着磨损  磨粒  刮擦  分子动力学  表面形貌    
Abstract: Wear is a common phenomenon on moving contact surface, whose failure behaviour produced frequently on working environment for macroscopic mechanical equipment, especially for micro/nano electromechanical system. Furthermore, it’s also primary reason that the noise is generated among them. When abrasive particles scraped surface, it would occur occlusion performance around contact region. However, the internal mechanism of adhesive wear and the main cause of adhesion induction are still unclear up to now. Therefore, research on the wear mechanism between abrasive particles and Al substrate using classical molecular dynamics method is of particular importance, and compared the surface topography and deformation characteristics with the scraped substrate affected by external factors (temperature, particle size, scraping velocity). It was found that there were three stages described well during scraping process, namely the elastic deformation at initial scraping stage, the elastic-plastic deformation at middle scraping stage, and the plastic removal at stable scraping stage. Among them, the elastic-plastic defor-mation stages at middle scraping were the main internal cause leading to the adhesion induction, and the adhesion furrow force plays a leading contribution role in the whole scraping process. Moreover, temperature field and static stress distribution on closely contact area shows much more strengthened features than other places, which result in the phenomenons of heat movement migration intensified on local contact region.This research result will plays a practical significant role at atomic level on understanding the internal motion behaviour during scraping process, and deep into the intrinsic mechanism of bond point formation, which will provide a scientific perspective views on development of ultra-precision surface machining.
Key words:  adhesion wear    abrasive particle    scratching process    molecular dynamics    surface morphology
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TH117.1  
基金资助: 浙江省基础公益研究计划(LGG19F020005);福建省自然科学基金(2017J01709;2018J01509;2018J01556);宁德师范学院重大科研培育项目(2017ZDK19);2017年福建省互联网+大学生创新创业省级教育项目(闽教学[2017]52号)
通讯作者:  chenjingjingfzu@126.com   
作者简介:  翁盛槟,衢州学院实验师,2015年于福州大学机械学院获得硕士学位。目前主要研究方向为超精密加工技术。
陈晶晶,宁德师范学院讲师,2015年于福州大学机械学院获得硕士学位。目前主要研究方向为微/纳机电系统界面接触与摩擦行为及调控。
引用本文:    
翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
WENG Shengbin, CHEN Jingjing, ZHOU Jianqiang, LIN Xiaoliang. Wear Mechanism Analysis in Subsurface for Al Substrate Scraped by Abrasive Particle from Atomic Simulation. Materials Reports, 2022, 36(1): 20110027-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110027  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20110027
[1] Xu H, Komvopoulos K. International Journal of Fracture, 2013, 181(2), 273.
[2] Begau C, Hartmaier A, George E. Acta Materialia, 2011, 59(3), 934.
[3] Jamie D G, III R. Acta Materialia, 2020, 190(15), 58.
[4] Li J, Fang Q H, Liu Y W, et al. Applied Surface Science, 2014, 303 (10),331.
[5] Sun K, Fang L, Yan Z Y, et al. Wear, 2013, 303(8),191.
[6] Shi J, Mayank V. Materials and Manufacturing Processes, 2011, 26(8), 1004.
[7] Pei Q X, Lu C, Fang F Z, et al. Computational Materials Science, 2006, 37(4), 434.
[8] Zhu B Y, Lyu M, Liang G X, et al. Tribology, 2017, 37(6), 845(in Chinese).
朱宝义, 吕明, 梁国星, 等. 摩擦学学报, 2017, 37(6), 845.
[9] Dai H F, Zhou Y Q, Zhang F. Materials Science in Semiconductor Processing, 2020, 105(8), 1.
[10] Dai H F, Zhang F, Zhou Y Q. Computational Materials Science,2020, 171(12), 109214.
[11] Chen J J, Hu H J, Lai L F. Surface Technology,2018,47(8),170(in Chinese).
陈晶晶,胡洪钧,赖联锋. 表面技术, 2018, 47(8),170.
[12] Chen J J, Hu H J, Li B Z. Surface Technology, 2017,46(8),195(in Chinese).
陈晶晶,胡洪钧, 李保震. 表面技术, 2017, 46(8),195.
[13] Xiang H G, Li H T, Fu T. Acta Materialia, 2017, 138(1), 131.
[14] Plimpton S. Journal of Computational Physics, 1995, 117,1.
[15] Verlet L. Health Physics, 1967, 22(1),79.
[16] Foiles S M, Baskes M I, Daw M S. Physical Review B,1988, 33(12),7983.
[17] Morse P M. Physical Review, 1929, 34(4), 57.
[18] Zhu Y,Ma H T,Fan H. Machine tool and hydraulics, 2018, 46(24), 21.
[19] Qian Y, Shang F L, Wan Q. Journal of Apply Physical, 2018, 24(11),115102.
[20] Qian Y, Shang F L, Wan Q. Computer Material Science, 2018, 149(15), 230.
[21] Sauraw G, Luo X C, Robert L R. Applied Physical Letter, 2012, 100(23),231.
[22] Sauraw G, Ben B, Chi W C, et al. Material Science Engineering A, 2015, 627(11), 249.
[23] Shimizu F, Ogata S, Li J. Materials Transactions, 2007, 48(11), 2923.
[1] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[2] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[3] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[4] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[5] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[6] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[7] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[8] 徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究[J]. 材料导报, 2021, 35(2): 2125-2132.
[9] 张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇. 纳米氧化锆多层吸附的模拟及实验研究[J]. 材料导报, 2021, 35(18): 18040-18046.
[10] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[11] 王友德, 史涛, 夏敏, 徐善华. 基于形貌的结构钢锈蚀评价指标及提取方法[J]. 材料导报, 2021, 35(16): 16138-16143.
[12] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[13] 寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
[14] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[15] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed