Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18040-18046    https://doi.org/10.11896/cldb.20060076
  无机非金属及其复合材料 |
纳米氧化锆多层吸附的模拟及实验研究
张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇
昆明理工大学机电工程学院,昆明 650500
Study on the Simulation and Experiment of Nano-Zirconium Oxide in Multilayer Adsorption
ZHANG Lianzhi, WU Zhangyong, WANG Tingyou, ZHU Qichen, CAI Xiaoming, MO Ziyong
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 12276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用机械搅拌法制备CTAB-ZrO2、SDS-ZrO2、CTAB-SiO2、SDS-SiO2纳米磨粒,并深入研究了纳米磨粒的包覆机理。推导出任意表面活性剂浓度下吸附量的计算式及多层吸附的Langmuir2-SCA等温方程,由修正的吸附量计算式可得到不同吸附剂浓度下表面活性剂的吸附量,并运用高浓度表面活性剂溶液下的吸附量检验Langmuir2-SCA等温方程的适用性。通过XRD、FT-IR、FE-SEM等测试手段对样品的结构、光学性质和形貌进行表征,并进行定性和定量分析。结果表明:Langmuir2-SCA等温方程可准确地描述高浓度表面活性剂溶液下的吸附量。相比于SDS-SiO2纳米颗粒,CTAB-ZrO2纳米颗粒能吸附更多的表面活性剂、更少的水分子;同时CTAB-ZrO2具有更好的摩擦磨损性能,且微粒呈球状,粒径分布较均匀,包覆性较好。因此,在磁性磨料研磨加工中,选择CTAB-ZrO2作为磨粒较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张莲芝
吴张永
王庭有
朱启晨
蔡晓明
莫子勇
关键词:  吸附剂浓度效应  等温式方程  多层吸附  磁性磨粒研磨  摩擦磨损性能    
Abstract: Abrasive particles CTAB-ZrO2, SDS-ZrO2, CTAB-SiO2, SDS-SiO2 were prepared by mechanical agitation, the principles of coating of abrasive nanoparticles were deeply studied. In this paper, the calculation formula for the adsorption amount for surfactant solution with any concentrations and the Langmuir2-SCA isothermal equation in multilayer adsorption were derived. Adsorption amount of surfactant at different adsorbent concentrations were obtained from the improved adsorption amount calculation formula, the applicability of the Langmuir2-SCA equation was examined with the adsorption amount for surfactant solution with high concentrations. In addition, the crystalline structures, light absorption pro-perties and morphologies of samples were analysed using XRD, FT-IR, FE-SEM measurement, and the properties of samples were analysed qualitatively and quantitatively. The results showed that the adsorption amount for surfactant solution with high concentrations can be fitted by Langmuir2-SCA isothermal equation; abrasive particles CTAB-ZrO2 have more adsorption amount of surfactants than abrasive particles SDS-SiO2, and less adsorption amount of water molecules; abrasive particles CTAB-ZrO2 have better friction and wear performance, and the coated particles are spherical, the particles size distribution is more uniform, and the coating is dense. Therefore, it is better to choose abrasive particles CTAB-ZrO2 in magnetic abrasive grinding.
Key words:  adsorbent concentration effect    isothermal equation    multilayer adsorption    magnetic abrasives grinding    friction and wear perfor-mance
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  O613.6  
基金资助: 国家自然科学基金(51165012)
作者简介:  张莲芝,博士研究生,研究方向为磁性复合材料的特种加工。以第一作者在国内外重要期刊发表文章6篇,申请发明专利3项。
吴张永,教授,主要研究方向为水基液压传动技术、电液数字控制技术,昆明理工大学机电工程学院功能流体应用与矿山机电工程研究所所长。主持及参与科研项目20余项,发表论文50余篇,获发明专利13项。
引用本文:    
张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇. 纳米氧化锆多层吸附的模拟及实验研究[J]. 材料导报, 2021, 35(18): 18040-18046.
ZHANG Lianzhi, WU Zhangyong, WANG Tingyou, ZHU Qichen, CAI Xiaoming, MO Ziyong. Study on the Simulation and Experiment of Nano-Zirconium Oxide in Multilayer Adsorption. Materials Reports, 2021, 35(18): 18040-18046.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060076  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18040
1 Kordonski W I, Golini D. International Journal of Modern Physics B, 2012,13(14),2205.
2 Wu J Z, Xing B J, Zou Y H, et al. Surface Technology, 2018, 47(11), 291(in Chinese).
吴金忠, 邢百军, 邹艳华,等. 表面技术, 2018, 47(11), 291.
3 Sun Y, Lan Y, Yang H J, et al. Surface Technology, 2018, 47(7), 137(in Chinese).
孙岩, 兰勇, 杨海吉,等. 表面技术, 2018, 47(7), 137.
4 Hatano E,Takazawa K, Shinmura T. Bulletin of the Japan Society of Precision Engineering, 2012, 19(1), 54.
5 Kanish T C, Kuppan P, Narayanan S. International Journal of Chemtech Research, 2014, 6(3), 1725.
6 Hayakawa K, Yokobaba C, Ichiki N, et al. International Journal of Research in Chemistry and Environment, 2016, 5(17), 368.
7 Burlakov V I. Reporter of the Priazovskyi State Technical University Section Technical Sciences, 2019, 12(38), 111.
8 Sihag N, Kala P, Pandey P M. Procedia Cirp, 2015, 26(32), 539.
9 Zhao L X, Song S E, Du N, et al. Colloid and Polymer Science, 2013, 291(3), 541.
10 Foo K Y, Hameed B H. Chemical Engineering Journal, 2010, 156(1), 2.
11 Liu Q S, Zheng T, Wang P, et al. Chemical Engineering Journal, 2010, 157(2), 348.
12 Ghasemi M, Naushad M, Ghasemi N, et al. Journal of Industrial & Engineering Chemistry, 2014, 20(4), 2193.
13 Nguyen P T M, Do D D, Nicholson D. Langmuir, 2013, 29(9), 2927.
14 Chakraborty A, Sun B. Applied Thermal Engineering, 2014, 72(2), 190.
15 Li J, Hitch M. Powder Technology, 2016, 291, 408.
16 Jang H M, Yoo S, Choi Y K, et al. Bioresource Technology, 2018, 259, 24.
17 Anber M A. International Journal of Environmental Science & Technology, 2015, 12(1), 139.
18 Mahmoud M E, Amira M F, Seleim S M, et al. Journal of Chemical & Engineering Data, 2017, 62(2), 839.
19 Din M F M, Ponraj M, Low W P, et al. Water Environment Research A Research Publication of the Water Environment Federation, 2016, 88(2), 118.
20 Lee C H, Park J M, Lee M G. Journal of Environmental Science International, 2015, 24(2), 151.
21 Asnaoui H, Laaziri A, Khalis M. Water Science & Technology, 2015, 72(9), 1505.
22 Wu H, Wen Q, Hu L, et al. Journal of Environmental Engineering, 2017, 144(2), 04017094.
23 Hlaing N N, Vignesh K, Sreekantan S, et al. Applied Surface Science, 2016, 363(15), 586.
[1] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[2] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[3] 张硕, 徐梓真, 张冰, 宋国林, 韩彬, 唐国翌. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*[J]. 《材料导报》期刊社, 2017, 31(2): 82-86.
[4] 米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
[5] 刘伯威, 徐菲, 刘咏, 杨阳, 唐兵. 钛酸钾含量对汽车摩擦材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 45-51.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed