Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20100217-6    https://doi.org/10.11896/cldb.20100217
  金属与金属基复合材料 |
基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制
赵帆1,2, 胡昊1,2, 刘雅政3, 张志豪1,2, 谢建新1,2
1 北京科技大学新材料技术研究院, 北京 100083
2 北京科技大学材料先进制备技术教育部重点实验室, 北京 100083
3 北京科技大学材料科学与工程学院, 北京 100083
Annealing Condition Control Based on the Evolution of Complex Microstructure and Surface Decarburization in 23MnNiMoCr54 Steel
ZHAO Fan1,2, HU Hao1,2, LIU Yazheng3, ZHANG Zhihao1,2, XIE Jianxin1,2
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 5143KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轧材显微组织特征和表面脱碳是高强度矿用圆环链钢质量控制的关键,对矿用圆环链的编链、焊接、热处理、预拉伸工序乃至服役性能有着重要影响。本实验研究了退火温度和气氛对矿用高强度圆环链钢23MnNiMoCr54轧材硬度、显微组织和表面脱碳的影响。研究结果表明,在660~710 ℃退火后,退火前的马氏体、贝氏体分别转变为回火索氏体、退火态贝氏体,碳化物球化程度提高,轧材硬度较退火前显著降低,并且随退火温度升高,硬度也逐渐降低。在720~730 ℃退火后,出现由粗大马氏体、铁素体、少量碳化物组成的异常组织,轧材硬度较高。另一方面,随着退火温度由660 ℃升高至730 ℃,表面脱碳层深度逐渐增加;退火温度升高至700 ℃以后,表面脱碳层深度随温度升高增加较快。在710 ℃退火时,随着氧气体积浓度由21%降低至约0%,表面脱碳层深度逐渐减小;当氧气浓度降低至5.25%以下后,直边位置不再产生表面脱碳。23MnNiMoCr54轧材的退火温度应控制在680~700 ℃,为尽量减少表面脱碳,可考虑将退火炉内的氧气体积浓度控制在5%以下。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵帆
胡昊
刘雅政
张志豪
谢建新
关键词:  矿用圆环链钢  退火  硬度  显微组织  表面脱碳    
Abstract: The microstructure characteristics and surface decarburization are crucial to the quality control of high strength mining round-link chain steel 23MnNiMoCr54 and have an important effect on the subsequent bending, welding, heat treatment, prestretching processes and service performance of mining round-link chains. This paper reported the effect of annealing temperature and atmosphere on harndess, microstructure and surface decarburization of 23MnNiMoCr54 rolled bars. After annealing in temperature range of 660—710 ℃, the martensite and bainite transform into tempered sorbite and annealed bainite, respectively. The spheroidization degree of carbide is improved, and the hardness of rolled bar decreases significantly. In addition, with the increase of annealing temperature, the hardness of rolled bar also decreases. After annealing in temperature range of 720—730 ℃, the abnormal microstructure is composed of coarse martensite, ferrite and a small amount of carbides, resulting in a relatively high hardness of rolled bar. In the meanwhile, with the annealing temperature increasing from 660 ℃ to 730 ℃, the surface decarburization depth increases with a sudden increasing at 700 ℃. With the oxygen concentration decreasing from 21% to about 0%, the surface decarburization depth after annealed at 710 ℃ decreases significantly. When the oxygen concentration is below 5.25%, the surface decarburization at straight edge is eliminated. The annealing temperature of 23MnNiMoCr54 rolled bars should be controlled in the temperature range of 680—700 ℃. In order to reduce the surface decarburization as much as possible, the oxygen concentration should be controlled below 5%.
Key words:  mining round-link chain steel    annealing    hardness    microstructure    surface decarburization
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TG161  
基金资助: 中国博士后科学基金(2019TQ0031);中央高校基本科研业务费(FRF-TP-20-030A1)
通讯作者:  ntzzh2279@163.com   
作者简介:  赵帆,北京科技大学新材料技术研究院,讲师。2019年6月毕业于北京科技大学材料科学与工程专业,获工学博士学位。同年加入北京科技大学新材料技术研究院工作至今,主要从事先进金属材料加工过程数值模拟与组织性能调控、基于大数据和机器学习的材料设计与制备等领域的研究。在国内外重要期刊发表学术论文20余篇。
张志豪,北京科技大学新材料技术研究院,教授。2005年3月毕业于北京科技大学材料加工工程专业,获工学博士学位,同年留校工作。主要从事先进材料挤压理论与技术、高硅电工钢控制凝固与控制成形、金属基复合材料制备与加工等领域的研究。在国内外重要期刊发表学术论文50余篇,授权国家发明专利10余项。2010和2012年分别获中国有色金属工业科学技术一等奖。
引用本文:    
赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
ZHAO Fan, HU Hao, LIU Yazheng, ZHANG Zhihao, XIE Jianxin. Annealing Condition Control Based on the Evolution of Complex Microstructure and Surface Decarburization in 23MnNiMoCr54 Steel. Materials Reports, 2022, 36(1): 20100217-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100217  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20100217
[1] Li M. Coal Engineering, 2016, 48(11), 134(in Chinese).
李明. 煤炭工程, 2016, 48(11), 134.
[2] Liu T, Tan C, Wang Z, et al. Algorithms, 2019, 12, 84.
[3] Wang X, Li B, Wang S, et al. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 3315.
[4] Zhao S, Wang P, Li S. Applied Sciences, 2020, 10, 5053.
[5] Jiang S B, Zeng Q L, Wang G. International Journal of Simulation Mo-delling, 2018, 17, 81.
[6] Li X. Coal Engineering, 2015, 47(10), 135(in Chinese).
李祥松. 煤炭工程, 2015, 47(10), 135.
[7] Wang B, Feng W, Guan Q, et al. Iron and Steel, 2010, 45(5), 76(in Chinese).
王宝奇, 冯文超, 管琴, 等. 钢铁, 2010, 45(5), 76.
[8] Shi J, Zhang M, Cheng Y, et al. Transactions of Materials and Heat Treatment, 2005, 26(3), 90(in Chinese).
石巨岩, 张猛, 程毅德, 等. 材料热处理学报, 2005, 26(3), 90.
[9] Shi L, Gao Y. Journal of Taiyuan University of Technology, 2005, 36(3), 270(in Chinese).
石岚, 高宇. 太原理工大学学报, 2005, 36(3), 270.
[10] Shang K, Luo X. Foundry Techonology, 2016, 37(6), 1255(in Chinese).
尚可超,骆晓炜. 铸造技术, 2016, 37(6), 1255.
[11] Shang K, Yang E. Coal Mine Machinery,2014,35(11),140(in Chinese).
尚可超,杨二亮. 煤矿机械, 2014, 35(11), 140.
[12] Sun Y, Li Q, Li S, et al. Journal of Materials Science and Engineering, 2013, 31(3), 351(in Chinese).
孙跃军, 李擎宇, 李思南, 等. 材料科学与工程学报, 2013, 31(3), 351.
[13] Wan N, Zhou L, Lei Y. Coal Mine Machinery, 2004, (6), 72(in Chinese).
宛农, 周立新, 雷应华. 煤矿机械, 2004, (6), 72.
[14] Yang Y, Guo H, Duan B, et al. Physics Examinaton and Testing, 2013, 31(1), 41(in Chinese).
杨勇, 郭红英, 段丙谦, 等. 物理测试, 2013, 31(1), 41.
[15] Li S, Wang Q, Cai B, et al. Heat Treatment of Metals, 2018, 43(9), 233(in Chinese).
李硕, 汪青芳, 蔡宝润, 等. 金属热处理, 2018, 43(9), 233.
[16] Zhang Z, Wang Q, Fang G, et al. Gansu Metallurgy, 2020, 42(2), 67(in Chinese).
张振民, 汪青芳, 方光锦, 等. 甘肃冶金, 2020, 42(2), 67.
[17] Gildersleeve M J. Materials Science and Technology, 1991, 7, 307.
[18] Medvedev A M, Mazurenko E A, Vrochinskii S L, et al. Metal Science and Heat Treatment, 2003, 45, 270.
[19] Liu Y, Zhang W, Tong Q, et al. ISIJ International, 2014, 54, 1920.
[20] Zhang C L, Zhou L Y, Liu Y Z. International Journal of Minerals, Meta-llurgy and Materials, 2013, 20(8), 720.
[21] Zhang C L, Liu Y Z, Zhou L Y, et al. International Journal of Minerals, Metallurgy and Materials, 2012, 19(2), 116.
[22] Li D, Anghelina D, Burzic D, et al. Steel Research International, 2009, 80(4), 298.
[23] Zhao F, Zhang C L, Liu Y Z. Archives of Metallurgy and Materials, 2016, 61, 1369.
[1] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[2] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[3] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[4] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[5] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[6] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[7] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[8] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[9] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[10] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[11] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[12] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[13] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[14] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[15] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed