Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20100189-6    https://doi.org/10.11896/cldb.20100189
  无机非金属及其复合材料 |
改性珊瑚骨料混凝土的电阻率模型
张路1,2, 牛荻涛1,2, 文波1,2, 张永利1, 陈昊1
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学省部共建西部绿色建筑国家重点实验室,西安 710055
Resistivity Model of Modified Coral Aggregate Concrete
ZHANG Lu1,2, NIU Ditao1,2, WEN Bo1,2, ZHANG Yongli1, CHEN Hao1
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 3112KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海洋环境中的混凝土结构长期遭受氯盐侵蚀,导致结构损伤严重,因此材料抗氯离子侵蚀能力对珊瑚混凝土结构的耐久性有重要影响。为了表征混凝土的抗氯离子渗透能力,采用改进交流电测试方法对珊瑚骨料混凝土与普通混凝土的电阻率进行测量,同时测试不同矿物掺合料珊瑚骨料混凝土的孔隙率,得出掺合料珊瑚骨料混凝土抗氯盐侵蚀的机理。研究表明:粉煤灰、硅灰和矿渣的掺加影响了珊瑚骨料混凝土的电阻率,提高了珊瑚骨料混凝土的抗氯离子渗透能力。当珊瑚骨料混凝土中掺合料的掺量为10%(占胶凝材料)时,硅灰珊瑚混凝土的电阻率是粉煤灰珊瑚混凝土的3.71倍,是矿渣珊瑚混凝土的2.02倍。在相同的掺量下,硅灰对混凝土电阻率的影响最大,矿渣次之,粉煤灰最小。在相同强度下,珊瑚骨料混凝土的电阻率小于普通混凝土的电阻率,约为普通混凝土的0.6倍;珊瑚骨料混凝土的孔隙率是普通混凝土的2.0~3.1倍。根据珊瑚骨料混凝土在365 d的电阻率,考虑温度、湿度、水胶比及掺合料等因素,最终建立了改性珊瑚骨料混凝土的电阻率模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张路
牛荻涛
文波
张永利
陈昊
关键词:  珊瑚骨料混凝土  电阻率  交流电测试  抗氯离子侵蚀    
Abstract: Reinforced concrete structures in marine environment suffer from chloride erosion for a long time, which leads to the decline of durability on structures. Therefore, the resistance ability of materials to chloride ion erosion plays an important role in the durability of concrete structures. As a nondestructive testing technology, the resistivity can be used to characterize the chloride penetration resistance of concrete. In this study, the resistivity of coral aggregate concrete (CAC) and ordinary concrete (OC) were measured by improved alternating current test method, and the porosity of CAC with different mineral admixtures was measured, so as to obtain the mechanism that mineral admixtures could improve the chloride penetration resistance of CAC. The results show that fly ash, silica fume and slag affect the resistivity of CAC and improve the anti-chloride ion permeability of CAC. When the content of admixture in CAC is 10%, the resistivity of CAC with silica fume is 3.71 times and 2.02 times that of fly ash and slag. At the same content of admixture, silica fume has the greatest influence on the CAC resistivity, followed by slag and fly ash. Under the same strength, the CAC resistivity is less than that of OC, about 0.6 times that of OC. The porosity of CAC is 2.0—3.1 times that of OC. According to the CAC resistivity in 365 days, temperature, humidity, water-binder ratio and admixtures were considered, and the resistivity model of modified CAC was finally established.
Key words:  coral aggregate concrete    resistivity    alternating current    chloride ion resistance
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TU502+.5  
基金资助: 国家自然科学基金(51590914;52078413;52078415)
通讯作者:  niuditao@163.com   
作者简介:  张路,2021年12月毕业于西安建筑科技大学,获得工学博士学位,主要从事新型钢筋混凝土材料领域的研究。在国内外重要期刊发表文章20多篇,申报发明专利3项。
牛荻涛,西安建筑科技大学,教授。1991年9月毕业于哈尔滨工业大学,获得工学博士学位。同年加入西安建筑科技大学工作至今,主要从事混凝土结构耐久性研究。在国内外重要期刊发表文章300多篇,申报发明专利50余项。
引用本文:    
张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
ZHANG Lu, NIU Ditao, WEN Bo, ZHANG Yongli, CHEN Hao. Resistivity Model of Modified Coral Aggregate Concrete. Materials Reports, 2022, 36(1): 20100189-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100189  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20100189
[1] Liu J, Ou Z. Arabian Journal for Science and Engineering, 2017, 43, 1529.
[2] Da B, Yu H F, Ma H Y, et al. Construction and Building Materials, 2016, 123, 47.
[3] Da B, Yu H F, Ma H Y, et al. Journal of Building Structures. 2017, 38(1), 151(in Chinese).
达波, 余红发, 麻海燕,等. 建筑结构学报, 2017,38(1), 151.
[4] Ma L, Li Z, Liu J, et al. Construction and Building Materials, 2019, 199, 244.
[5] Niu D, Zhang L, Fu Q, et al. Construction and Building Materials, 2020, 238,117685.
[6] Zhang L, Niu D, Wen B, et al. Construction and Building Materials, 2020, 258,119564.
[7] Wang Y, Shui Z, Gao X, et al. Journal of Cleaner Production, 2019, 219,763.
[8] Wu Z, Yu H F, Ma H Y, et al. Corrosion Science, 2020, 163,108238.
[9] Da B, Yu H F, Ma H Y, Wu Z. Journal of Testing and Evaluation, 2020, 2, 1537.
[10] ASTM C. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration, Annual Book of ASTM Standards, 2012.
[11] CCES01-2004. 混凝土结构耐久性设计与施工指南,中国建筑工业出版社, 2005.
[12] Polder R. Construction and Building Materials, 2001, 15, 125.
[13] Han J G, Li K F. Journal of Building Materials, 2015, 18(4), 704(in Chinese).
韩建国, 李克非. 建筑材料学报, 2015, 18(4),704.
[14] 万小梅,范宏,姜福香,等. 中国专利,CN110082279A, 2019.
[15] Vries H. In: Proceedings of the International Conference held at the University of Dundee. Scotland, UK, 2002,pp.1.
[16] Gulikers J. Material and Corrosion, 2005, 56,393.
[17] Ren H, Yin J. Advance in Civil Infrastructure Engineering, 2015, 847, 469.
[18] Hope B, Ip A, Manning D. Cement and Concrete Research, 1985,15(3), 525.
[19] 万小梅,杨保先,赵铁军,等. 中国专利, CN207528605U, 2018.
[20] Yin N N, Wan X M, Zhao T J, et al. Journal of Concrete and Cement Products, 2020(2), 86(in Chinese).
尹暖暖, 万小梅, 赵铁军,等. 混凝土与水泥制品, 2020(2), 86.
[21] Zhao T J, Zhou Z H, Liu J C. Concrete, 2000(2), 12(in Chinese).
赵铁军,周宗辉,刘君昌. 混凝土,2000(2), 12.
[22] Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Cement and Concrete Composites, 2005, 27, 425.
[23] Lu C F, Zhang Y L, Ji Y S, et al. Journal of Central South University (Science and Technology), 2017, 48(3), 761(in Chinese).
鲁彩凤,张艳龙,姬永生, 等.中南大学学报(自然科学版), 2017, 48(3), 761.
[24] Gjrv O, Vennesland Y, El-Busaidy S. In: Proceedings of the Annual Offshore Technology Conference. Trondheim, 1977, pp.581.
[25] Tasdemir C. Cement and Concrete Research, 2003, 33, 1637.
[26] Mehmet G, Erdogan O. Materials and Structures, 2007, 40, 923.
[27] Hai B, Jian Y, Zheng H, et al. Applied Mechanics and Materials, 2016, 847, 469.
[28] Hope B. ACI Materials Journal, 1987, 84, 306.
[1] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[2] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[3] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[4] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[5] 柴源, 牛勇, 李文杰, 吕海波. 珊瑚骨料混凝土改性技术研究进展[J]. 材料导报, 2021, 35(15): 15134-15142.
[6] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[7] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[8] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[9] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[10] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[11] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[12] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[13] 苏丽, 牛荻涛, 罗大明. 珊瑚骨料混凝土力学性能及耐久性能研究[J]. 材料导报, 2018, 32(19): 3387-3393.
[14] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[15] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed