Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20110091-5    https://doi.org/10.11896/cldb.20110091
  高分子与聚合物基复合材料 |
铁氟龙AFT250航空电线燃烧毒害气体产物生成特性
刘天奇, 王宁, 蔡之馨
沈阳航空航天大学安全工程学院,沈阳 110136
Generation Characteristics of Toxic and Harmful Gas Products in Combustion of Teflon AFT250 Aviation Wire
LIU Tianqi, WANG Ning, CAI Zhixin
School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China
下载:  全 文 ( PDF ) ( 3155KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用烟毒性测试箱研究了铁氟龙AFT250航空电线燃烧后生成的毒害气体HF、CO、CO2浓度的变化特性。结果表明:在点火温度为1 150 ℃、点火持续时间10 s条件下,铁氟龙AFT250电线燃烧生成HF有毒气体质量浓度为8 mg/m3,生成CO和CO2气体体积浓度分别为0.001 5%和0.12%,说明在该条件下已生成一定量的毒害气体,但毒害气体浓度并不大。随截取电线长度在10~100 cm内增加,生成有毒有害气体HF、CO、CO2的浓度均不断增大。当电线长度为100 cm时,HF质量浓度增至18 mg/m3,CO体积浓度增至0.004%,CO2体积浓度增至0.425%,这主要由于增加电线长度会增加绝缘层材料聚四氟乙烯中F、C元素含量,导致更多的F、C原子和环境中的H、O原子结合。随点火持续时间在10~50 s内延长,燃烧生成的毒害气体HF、CO、CO2浓度均显著增大,HF气体质量浓度增幅为7 mg/m3,CO和CO2体积浓度增幅分别为0.001 5%和0.07%,这主要是由于点火持续时间越长,会导致更多的C-C和C-F化学键断裂,从而增大生成的HF、CO和CO2浓度,极大地增加人体中毒与窒息的风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘天奇
王宁
蔡之馨
关键词:  铁氟龙  有毒有害气体  燃烧产物  点火持续时间    
Abstract: In order to study the change characteristics of the toxic gases HF, CO and CO2 generated by the combustion of Teflon AFT250 aviation wire, a smoke toxicity test box was used for testing. The results show that under the conditions of ignition temperature of 1 150 ℃ and ignition duration of 10 s, the mass concentration of HF toxic gas generated by the combustion of Teflon AFT250 wire is 8 mg/m3, and the volume concentration of CO and CO2 generated are 0.001 5% and 0.12%, respectively. It shows that a certain amount of poisonous gas has been generated under this condition, but the concentration of poisonous gas is not large. As the length of the intercepted wire increases within 10 to 100 cm, the concentration of the generated toxic and harmful gases HF, CO and CO2 increase continuously. When the wire length is 100 cm, the mass concentration of HF increases to 18 mg/m3, the volume concentration of CO increases to 0.004%, and the volume concentration of CO2 increases to 0.425%. This is mainly due to the increase of the length of the wire will increase the insulating layer material PTFE in the content of F and C elements, more F and C atoms are combined with H and O atoms in the environment. As the ignition duration increases within 10—50 s, the toxic gases HF, CO, and CO2 generated by combustion all increase significantly, the mass concentration of HF gas increases by 7 mg/m3, and the increase by volume concentration of CO and CO2 is 0.001 5% and 0.07%, this is mainly due to the longer the ignition duration, which will cause more C-C and C-F chemical bonds to break, thereby increasing the concentration of HF, CO and CO2, and greatly increasing the risk of human poisoning and suffocation.
Key words:  Teflon    toxic and harmful gas    combustion product    ignition duration
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  V250.2  
基金资助: 国家自然科学基金(12102271;51774168);辽宁省自然科学基金(2020-BS-175);辽宁省教育厅科研项目(JYT19038);沈阳航空航天大学人才引进博士科研启动基金(18YB25)
通讯作者:  liutianqi613@163.com   
作者简介:  刘天奇,沈阳航空航天大学副教授,博士,硕士生导师,国家一级建造师。中国煤炭工业安全科学技术学会矿井降温专业委员会委员、中国煤炭工业安全科学技术学会瓦斯防治专业委员会委员、中国煤炭工业安全科学技术学会火灾防治专业委员会委员、辽宁省科技项目评审与科技成果评价专家、中国航空学会会员、清华大学公共安全科学技术学会会员,主要从事航空材料燃烧理论及防治技术、工业气体粉尘爆炸动力理论及防爆技术等方面研究。主持参与国家自然科学基金四项、省部级项目六项,参编著作《矿井粉尘防治理论及技术》,申报发明专利三项。获2016年度中国职业安全健康协会科学技术三等奖、2016年度中国商业联合会科学技术三等奖、第十届全国采矿学术会议优秀论文奖。Journal of Hazardous Materials、等期刊审稿专家,Journal of Safety Science and TechnologyJournal of Aviation & Aerospace等期刊编委,国内外公开发表论文五十余篇。
引用本文:    
刘天奇, 王宁, 蔡之馨. 铁氟龙AFT250航空电线燃烧毒害气体产物生成特性[J]. 材料导报, 2022, 36(1): 20110091-5.
LIU Tianqi, WANG Ning, CAI Zhixin. Generation Characteristics of Toxic and Harmful Gas Products in Combustion of Teflon AFT250 Aviation Wire. Materials Reports, 2022, 36(1): 20110091-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110091  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20110091
[1] Vorobyeva O, Bartok J, ian P, et al. International Journal of Environmental Research and Public Health,2020,17(3), 796.
[2] Swarna V S, Alarifi I M, et al. Polymer Composites,2019,40,3691.
[3] Jacob Marx, Samuel Robbins, Zane Grady, et al. Applied Surface Science,2020,505,144.
[4] Simona Bennici, Téo Polimann, Michel Ondarts, et al. Renewable and Sustainable Energy Reviews,2020,117,1.
[5] Vajdova Iveta, Jencˇová Edina, Szabo Stanislav. International Journal of Environmental Research and Public Health,2019, 16(20),138.
[6] Pirozzi Domenico, Imparato Claudio, DErrico Gerardino, et al. Journal of Hazardous Materials,2020,387,121.
[7] Sugawara M, Tago M. International Journal of Heat and Mass Transfer,2020,149,319.
[8] Yang K, Wang Y,You Y, et al. Chemical Engineering Journal,2020,382,1.
[9] Koenig A. Construction and Building Materials,2020,244,261.
[10] Dong Yijia,Su Chao,Qiao Pizhong, et al. Construction and Building Materials,2020,243,369.
[11] Valentina Colapicchioni, Silvia Mosca, Marina Cerasa, et al. Journal of Hazardous Materials,2020,393,76.
[12] María Contreras, José Camacho, Francisco Morales. Journal of Environmental Management,2020,255,309.
[13] Toony M,Algarni H. Environmental Monitoring and Assessment,2019,191(12),779.
[14] Feng R, Tian R, Zhang H. Journal of Hazardous Materials,2019,379,1211.
[15] Raquel Ramírez, Irina Lijanova, Natalya Likhanova. Arabian Journal of Chemistry,2020,13(1),27.
No related articles found!
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed