Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20110132-7    https://doi.org/10.11896/cldb.20110132
  无机非金属及其复合材料 |
羟基化平板孔中水合钠离子去溶剂化的第一性原理计算
杨绍斌1, 刘雪丽1,张旭1,2, 唐树伟1
1 辽宁工程技术大学材料科学与工程学院,辽宁 阜新 123000
2 辽宁工程技术大学矿业学院,辽宁 阜新 123000
Insight into the Desolvation of Na+ with Water as a Solvent in Hydroxyl-flat Pores: a First Principle Calculation
YANG Shaobin1, LIU Xueli1, ZHANG Xu1,2, TANG Shuwei1
1 Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
2 College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
下载:  全 文 ( PDF ) ( 4792KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验采用第一性原理计算,研究了水合钠离子([Na(H2O)]+)在羟基化平板孔中的去溶剂化行为及去溶剂化后的离子与羟基化平板孔之间相互作用的电子性质。结果表明,[Na(H2O)]+在羟基化的平板孔中发生完全去溶剂化及部分去溶剂化的孔径尺寸均增大,其中,完全去溶剂化的孔径尺寸为4.6 ,部分去溶剂化的孔径尺寸范围为4.6~4.8 。发生去溶剂化后的孔径尺寸增大后,在孔内所容纳的去溶剂化离子越多,超级电容器的电容量也会越大。对[Na(H2O)]+在羟基化平板孔及平板孔中的扩散性能进行计算,发现羟基的存在并没有阻碍[Na(H2O)]+的扩散。对去溶剂化后的Na+嵌入羟基化平板孔后结构的态密度(DOS)、电子局域化函数(ELF)及电荷差分密度分析表明,去溶剂化后的Na+主要与羟基化平板孔内羟基的氧原子作用而不是与平板孔基面内的碳原子作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨绍斌
刘雪丽
张旭
唐树伟
关键词:  去溶剂化  羟基化平板孔  水合钠离子  第一性原理计算    
Abstract: The desolvated behavior of hydrated sodium ion ([Na(H2O)]+) in hydroxyl-flat pore and the electronic properties of Na+ (after the desolvation of [Na(H2O)]+) in pores were explored by first-principles calculation. The results show that the fully and partially desolvated pore size increase after the flat pores by hydroxylation. The fully desolvated size of [Na(H2O)]+ in hydroxyl-pore is 4.6 , and partial desolvation occurs in the range of 4.6—4.8  in solutions. The most desovlated ions will be accommodated with the desolvated pore size increasing, therefore the capacitances of supercapacitor will be larger. It is found that the existence of hydroxyl does not hinder the diffusion of [Na(H2O)]+ from the calculation of diffusion properties of [Na(H2O)]+ in hydroxyl-flat pores and flat pores. Through the density of states (DOS), electron localization function (ELF) and electron density difference distributed graph analysis, the results show that the Na+ (after the desolvation of [Na(H2O)]+) is primary interaction with the O atom of groups in the pores rather than the C atoms in the plane of flat pore.
Key words:  desolvation    hydroxyl-flat pore    hydrated sodium ion    first-principles calculation
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  O641  
基金资助: 国家自然科学基金(51774175)
通讯作者:  lgdysb@163.com   
作者简介:  杨绍斌,辽宁工程技术大学教授,博士研究生导师,2000年博士毕业于大连理工大学化学工艺专业。现任辽宁工程技术大学材料科学与工程学院院长,辽宁省化工学会煤化工专业委员会常务理事以及阜新市环境科学与工程学会理事等。主要从事材料与化学学科的科研和教学工作,研究方向为新能源材料、碳素功能材料和煤化工等领域的研究工作。主持完成国家自然科学基金、教育部博士点基金和省部级科研基金项目等10余项。发表学术论文80余篇,其中SCI和EI等检索论文20余篇,发明专利授权10余项。
引用本文:    
杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
YANG Shaobin, LIU Xueli, ZHANG Xu, TANG Shuwei. Insight into the Desolvation of Na+ with Water as a Solvent in Hydroxyl-flat Pores: a First Principle Calculation. Materials Reports, 2022, 36(1): 20110132-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110132  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20110132
[1] Yu Z, Tetard L, Zhai L, et al. Energy & Environmental Science, 2015, 8(3), 702.
[2] Hu Q Z, Wang Y X, Chao H W. Modern Chemical Research, 2019, (2), 177(in Chinese).
胡勤政, 王英学, 曹宏伟. 当代化工研究, 2019, (2), 177.
[3] Wakchaure V C, Kottaichamy A R, Nidhankar A D, et al. ACS Applied Energy Materials, 2020, 3(7), 6352.
[4] Chen S, Wu B, Qian H, et al. Journal of Power Sources, 2019, 438, 227000.
[5] Bissett M A, Kinloch I A, Dryfe R A W. ACS Applied Materials & Interfaces, 2015, 7(31), 17388.
[6] Yu P, Zhang Z, Zheng L, et al. Advanced Energy Materials, 2016, 6(20), 1601111.
[7] Zhang L, Liu L, Yu Y, et al. Journal of Materials Science Materials in Electronics, 2019, 30(4), 3316.
[8] Chmiola J, Yushin G, Gogotsi Y, et al. Science, 2006, 313(5794), 1760.
[9] Liang C, Guo S S, Jie S, et al. Nature, 2017, 550(7676), 380.
[10] Liu J, Shi G, Guo P, et al. Physical Review Letters, 2015, 115(16), 164502.
[11] Mariana, Zancan, Tonel, et al. Journal of Molecular Graphics & Modelling, 2019, 88, 121.
[12] Wang D W, Sun C, Zhou G, et al. Journal of Materials Chemistry A, 2013, 1(11), 3607.
[13] Xu B, Yue S, Sui Z, et al. Energy & Environmental Science, 2011, 4 (8), 2826.
[14] Miao F, Wu W, Miao R, et al. Materials Express, 2017, 7(2), 151.
[15] Zhang X, Yang S B, Shan X Y, et al. Physical Chemistry Chemical Physics, 2019, 21(42), 23697.
[16] Kohn W, Sham L J. Physical Review, 1965, 140(4A), 1133.
[17] Ma X, Hu J, Zheng M, et al. Applied Surface Science, 2019, 489(9), 684.
[18] Payne M C, Arias T A, Joannopoulos J D. Reviews of Modern Physics, 1992, 64(4), 1045.
[19] Segall M D, Lindan P J D, Probert M J, et al. Journal of Physics Condensed Matter, 2002, 14(11), 2717.
[20] Schira R, Latouche C. New Journal of Chemistry, 2020, 44(27), 1.
[21] Grimme S. Journal of Computational Chemistry, 2010, 27(15), 1787.
[22] Long X, Chen J, Chen Y. Applied Surface science, 2016, 370(5), 11.
[23] Musari A A, Joubert D P, Adebayo G A. Physica B: Condensed Matter, 2019, 552, 159.
[24] Monkhorst H J, Pack J D. Physical Review B, 1976, 13(12), 5188.
[25] Calborean A, Buimaga-Iarinca L, Graur F. Physica Scripta, 2015, 90(5), 055803.
[26] Ghaderi N, Peressi M. Journal of Physical Chemistry C, 2010, 114(49), 21625.
[27] Rabone J, Van Uffelen P. Journal of Nuclear Materials, 2015, 459, 30.
[28] Yan J A, Chou M Y. Physical Review B: Condensed Matter, 2010, 82(12), 1303.
[29] Yang S B, Shan X Y, Li S N, et al. Materials Reports B: Research Papers, 2019, 33(5), 1640(in Chinese).
杨绍斌, 单学颖,李思南,等.材料导报:研究篇,2019,33(5),1640.
[30] Koumpouras K, Larsson J A. Journal of Physics: Condensed Matter, 2020, 32(31), 315502.
[31] Dobrota A S, Pati I A, Skorodumova N V. Electrochimica Acta, 2015, 176, 1092.
[1] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[2] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[3] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[4] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed