Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5122-5129    https://doi.org/10.11896/cldb.20070198
  金属与金属基复合材料 |
奥氏体不锈钢辐照肿胀和偏析的研究进展
李连奇, 杨占兵
北京科技大学冶金与生态工程学院,北京 100083
Research Progress on Void Swelling and Radiation-induced Segregation of Austenitic Stainless Steel
LI Lianqi, YANG Zhanbing
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 11382KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着社会对能源需求的增加,核能作为一种可大规模替代传统化石能源的清洁能源备受关注。目前我国正在大力推动第四代先进核反应堆技术的研发,这对反应堆结构材料的性能提出了更高的要求。
由于反应堆堆芯的强烈辐照,作为堆芯结构材料的奥氏体不锈钢长期服役会发生辐照损伤现象,尤其是辐照肿胀和偏析,威胁反应堆运营安全。
研究发现,奥氏体不锈钢的辐照肿胀和偏析现象与辐照剂量、辐照温度、合金元素成分等密切相关。对于辐照肿胀,常用冷加工和添加合金元素等方法进行控制,其中15-15Ti奥氏体不锈钢能够承受大于100 dpa的辐照剂量,被选为快堆候选包壳材料。但这两种方法开发的奥氏体不锈钢仍未达到先进核反应堆对奥氏体不锈钢抗辐照性能的要求,为此需要对控制所有辐照损伤效应的点缺陷的扩散行为进行更深入的系统和实验分析,以深入理解辐照肿胀现象。对于辐照偏析,其产生机制一直存在争议,主要有空位机制和间隙原子机制两种观点,但奥氏体不锈钢的辐照偏析很可能是这两种机制混合控制的结果,为此仍需进一步建立更优化的动力学模型进行研究。此外,近期研究表明辐照缺陷的一维迁移现象可能与辐照损伤密切相关,但仍存在一些细节需要进一步的实验研究。
本文阐述了奥氏体不锈钢发生辐照肿胀和偏析的相关影响因素,分析了控制辐照肿胀的现有手段的不足,总结了辐照偏析发生机制的争议和相关进展,归纳了奥氏体不锈钢抗辐照性能研究存在的问题并对未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李连奇
杨占兵
关键词:  核反应堆材料  奥氏体不锈钢  辐照肿胀  辐照偏析    
Abstract: As society’s demand for energy increases, nuclear energy has become the focus of recent studies. China is strongly promoting the development of fourth generation nuclear reactor, which puts higher requirements on the performance of reactor structural materials.
Austenitic stainless steel, as the core structure material,will undergo radiation damage under long-term service due to the intense radiation in the reactor core, especially the void swelling and radiation-induced segregation, which threaten the safety of the reactor operation.
Void swelling and radiation-induced segregation of austenitic stainless steel are closely related to irradiation dose, irradiation temperature and alloy composition.Cold working and alloy elements are usually used to control void swelling. The 15-15Ti austenitic stainless steel shows potential for cladding of fast breeder reactor due to withstanding radiation doses over 100 dpa. However, the austenitic stainless steels developed by these two methods have not fully satisfied the requirement for service. Point defects govern the radiation damage effects; therefore, a more in-depth syste-matic and experimental analysis on the diffusion behavior of point defects is essential to understand the void swelling. Two controversial views were proposed on the mechanism of radiation-induced segregation, that is, vacancy mechanism and interstitial atomic mechanism. However, the radiation-induced segregation of austenitic stainless steel may be governed by both; subsequently, a more optimized kinetic model needs to be established for further study. In addition, recent studies show that the one dimension motion of radiation defects is related to radiation damage, but further research is essential to explore some experimental details.
In the present paper, we review the influence factors of void swelling and radiation-induced segregation of austenitic stainless steel, the shortcomings of the existing controlling methods of void swelling, and the progress on the mechanism of radiation-induced segregation. Finally, we prospect the future research directions according to the existing problems of study on the anti-irradiation property of austenitic stainless steel.
Key words:  materials in nuclear reactor    austenitic stainless steel    void swelling    radiation-induced segregation
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TL341  
基金资助: 国家自然科学基金(51471027)
通讯作者:  yangzhanbing@ustb.edu.cn   
作者简介:  李连奇,2018年7月毕业于北京科技大学,获得工学学士学位。现为北京科技大学冶金与生态工程学院硕士研究生,在杨占兵副教授的指导下进行研究。目前主要研究领域为奥氏体不锈钢的辐照损伤。
杨占兵,北京科技大学冶金与生态工程学院副教授,硕士研究生导师。2001年7月本科毕业于北京科技大学材料科学与工程学院,2008年1月在北京科技大学冶金与生态工程学院冶金工程物理化学系取得博士学位,2008—2014年在日本北海道大学工学部能源-材料融合领域研究中心进行博士后研究工作。2014年3月起担任北京科技大学冶金与生态工程学院物理化学系副教授,主要从事高能粒子辐照条件下金属晶体中的非平衡现象及其动力学过程以及钢中夹杂物控制的研究工作,在国内外期刊上发表论文70余篇。
引用本文:    
李连奇, 杨占兵. 奥氏体不锈钢辐照肿胀和偏析的研究进展[J]. 材料导报, 2021, 35(5): 5122-5129.
LI Lianqi, YANG Zhanbing. Research Progress on Void Swelling and Radiation-induced Segregation of Austenitic Stainless Steel. Materials Reports, 2021, 35(5): 5122-5129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070198  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5122
1 Yan S M. Foreign Nuclear News,2004(4),31(in Chinese).
闫淑敏.国外核新闻,2004(4),31.
2 Abram T, Ion S. Energy Policy,2008,36(12),4323.
3 Azevedo C R F. Engineering Failure Analysis,2011,18(8),1943.
4 Yang C, Fang C, Tong J J. Nuclear Power Engineering,2014,35(supplement 1),200(in Chinese).
杨辰,房超,童节娟.核动力工程,2014,35(增刊1),200.
5 Ye Q Z. Southern Energy Construction,2015,2(4),18(in Chinese).
叶奇蓁.南方能源建设,2015,2(4),18.
6 Yvon P, Carré F. Journal of Nuclear Materials,2009,385(2),217.
7 Deng P, Peng Q J, Han E H, et al. Acta Metallurgica Sinica,2017,53(12),1588(in Chinese).
邓平,彭群家,韩恩厚,等.金属学报,2017,53(12),1588.
8 Surh M P, Sturgeon J B, Wolfer W G. Journal of Nuclear Materials,2005,336(2-3),217.
9 Malaplate J, Michaut B, Renault-Laborne A, et al. Journal of Nuclear Materials,2019,517,201.
10 McMurtrey M D, Was G S, Patrick L, et al. Materials Science and Engineering: A,2011,528(10-11),3730.
11 Jiao Z, Was G S. Journal of Nuclear Materials,2011,408(3),246.
12 Wang M, Song M, Lear C R, et al. Journal of Nuclear Materials,2019,515,52.
13 Strafella A, Coglitore A, Fabbri P, et al. Frattura ed Integrità Strutturale,2017,11(42),352.
14 Yu B, Han W, Tong Z, et al. Materials,2019,12(16),2541.
15 Allen T R, Cole J I, Gan J, et al. Journal of Nuclear Materials,2005,342(1-3),90.
16 Horiki M, Yoshiie T, Huang S S, et al. Journal of Nuclear Materials,2013,442(1-3),S813.
17 Barcellini C, Harrison R W, Dumbill S, et al. Journal of Nuclear Mate-rials,2019,518,95.
18 Wan F R. Radiation damage of metal materials, Science Press, China,1993(in Chinese).
万发荣.金属材料的辐照损伤,科学出版社,1993.
19 Nordlund K. Journal of Nuclear Materials,2019,520,273.
20 Allen T R, Busby J T, Klueh R L, et al. JOM,2008,60(1),15.
21 Zinkle S J, Was G S. Acta Materialia,2013,61(3),735.
22 Cawthorne C, Fulton E J. Nature,1967,216(5115),575.
23 Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys, Berlin, Heidelberg:Springer, 2007,pp.545.
24 Bellefon G M, Bertsch K M, Chancey M R, et al. Journal of Nuclear Materials,2019,523,291.
25 Kim H, Gigax J G, Fan J, et al. Journal of Nuclear Materials,2019,527,1.
26 Bae D S, Kim S K, Lee S P, et al. Fusion Engineering and Design,2006,81(8-14),969.
27 Kato T, Takahashi H, Izumiya M. Materials Transactions, JIM,1991,32(10),921.
28 Sekio Y, Yamashita S, Sakaguchi N, et al. Materials Transactions,2014,55(3),438.
29 David C, Panigrahi B K, Balaji S, et al. Journal of Nuclear Materials,2008,383(1-2),132.
30 Sekio Y, Sakaguchi N. Materials Transactions,2019,60(5),678.
31 Allen T R, Cole J I, Gan J, et al. Journal of Nuclear Materials,2005,342(1-3),90.
32 Yamashita S, Tachi Y, Akasaka N, et al. Journal of Nuclear Materials,2011,417(1-3),953.
33 Yang S B, Yang Z B, Wnag H, et al. Nonferrous Metals Science and Engineering,2017,8(2),24(in Chinese).
杨苏冰,杨占兵,王会,等.有色金属科学与工程,2017,8(2),24.
34 Yang Z B, Yang S g, Li L Q. China Metallurgy,2020,30(3),35(in Chinsese).
杨占兵,杨苏冰,李连奇.中国冶金,2020,30(3),35.
35 Yoshiie T, Cao X Z, Sato K, et al. Journal of Nuclear Materials,2011,417(1-3),968.
36 Yoshiie T, Sato K, Cao X, et al. Journal of Nuclear Materials,2012,429(1-3),185.
37 Garner F A, Black C A, Edwards D J. Journal of Nuclear Materials,1997,245(2-3),124.
38 Rouxel B, Bisor C, De Carlan Y, et al. EPJ Nuclear Sciences & Techno-logies,2016,30(2),1.
39 Wan F R. Chinese Journal of Engineering, DOI: 10.13374/j.issn2095-9389.2020.02.05.001(in Chinese).
万发荣.工程科学学报, DOI: 10.13374/j.issn2095-9389.2020.02.05.001.
40 Schibli R, Schäublin R. Journal of Nuclear Materials,2013,442(1-3),S761.
41 Etienne A, Radiguet B, Cunningham N J, et al. Journal of Nuclear Materials,2010,406(2),244.
42 Kaur N, Deng C, Ojo O A. Computational Materials Science,2020,179,109685.
43 Takahashi H, Hashimoto N. Materials Transactions, JIM,1993,34(11),1027.
44 Watanabe S, Sakaguchi N, Hashimoto N, et al. Journal of Nuclear Materials,1995,224(2),158.
45 Takahashi H, Sakaguchi N, Hashimoto N, et al. Materials Science Forum,1996,207-209,561.
46 Fukuya K, Nakano M, Fujii K, et al. Journal of Nuclear Science and Technology,2004,41(6),673.
47 Jin H H, Hwang S S, Choi M J, et al. Journal of Nuclear Materials,2019,513,271.
48 Was G S, Wharry J P, Frisbie B, et al. Journal of Nuclear Materials,2011,411(1-3),41.
49 Simonen E P, Bruemmer S M. JOM,1998,50(12),52.
50 Allen T R, Busby J T, Was G S, et al. Journal of Nuclear Materials,1998,255(1),44.
51 Allen T R, Was G S. Acta Materialia,1998,46(10),3679.
52 Fournier L, Sencer B H, Was G S, et al. Journal of Nuclear Materials,2003,321(2-3),192.
53 Sekio Y, Yamashita S, Sakaguchi N, et al. Journal of Nuclear Materials,2015,458,355.
54 Watanabe S, Sakaguchi N, Kurome K, et al. Journal of Nuclear Mate-rials,1997,240(3),251.
55 Stepanov I A, Pechenkin V A, Konobeev Y V. Journal of Nuclear Mate-rials,2004,329-333,1214.
56 Tucker J D, Allen T R, Najafabadi R, et al. In: Conference Record of the International Conference on Mathematics, Computational Methods & Reactor Physics. New York,2009,pp.891.
57 Sakaguchi N, Takahashi H, Ichinose H. Materials Transactions,2005,46(3),440.
58 Yang Z, Sakaguchi N, Watanabe S, et al. Scientific Reports,2011,1,190.
59 Yang Z, Watanabe S. Acta Materialia,2013,61(8),2966.
60 Yang Z, Watanabe S, Kato T. Scientific Reports,2013,3,1201.
61 Yang S B, Yang Z B, Wang H. Chinese Journal of Engineering,2017,39(6),903(in Chinese).
杨苏冰,杨占兵,王会.工程科学学报,2017,39(6),903.
62 Yang S, Yang Z B, Wang H, et al. Journal of Nuclear Materials,2017,488,215.
63 Watanabe S, Takamatsu Y, Sakaguchi N, et al. Journal of Nuclear Materials,2000,283-287,152.
64 Sekine M, Sakaguchi N, Endo M, et al. Journal of Nuclear Materials,2011,414(2),232.
65 Sakaguchi N, Endo M, Watanabe S, et al. Journal of Nuclear Materials,2013,434(1-3),65.
66 Qu X J, Yang Z B, Yang S B. Surface Technology,2019,48(5),201(in Chinese).
曲晓健,杨占兵,杨苏冰.表面技术,2019,48(5),201.
67 Kawai M, Kurishita H, Kokawa H, et al. Journal of Nuclear Materials,2012,431(1-3),16.
[1] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[2] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[3] 沈华亚, 陈法国, 韩毅, 杨明明, 李国栋, 梁润成. 金属氢化物中子屏蔽应用研究现状[J]. 材料导报, 2019, 33(Z2): 484-487.
[4] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. 强碳化物形成元素与碳的配比关系和稳定化处理对310S奥氏体不锈钢析出相行为的影响[J]. 材料导报, 2019, 33(18): 3101-3106.
[5] 张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇. 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究*[J]. 《材料导报》期刊社, 2017, 31(18): 146-149.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed