Study on CeO2 Pillared Montmorillonite Modified Asphalt and Its Catalytic Performance Based on the Emission Reduction of Ecological Pavement
JIN Jiao1,*, LIU Mohan1, LIU Shuai1, CHEN Bozhen2, LIU Xinyu1
1 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China 2 Hubei Communications Investment Construction Group Co., Ltd., Wuhan 430050, China
Abstract: The improvement of pavement durability and functional development are the current research hotspots in the field of road. The CeO2 pillared montmorillonite (Ce-MMT) composite modifier was prepared by the liquid-phase precipitation method. By analyzing the structural composition and microscopic characterization, it was found that CeO2 successfully entered the interlayer of montmorillonite to form a pillared structure, and the absorptive ability of the new composite material in the ultraviolet and visible light regions was significantly enhanced. The high and low-tempe-rature performance, anti-aging performance, and catalytic degradation efficiency of modified asphalt with different Ce-MMT content were also studied. The results show that Ce-MMT can effectively improve the high-temperature performance and the anti-aging performance of the asphalt, when the content range of the modifier is 4wt%—6wt%. Besides, the Ce-MMT modified asphalt with a content of 6% can degrade NO up to 50.8% after reacting for 120 min in the simulated automobile exhaust test. This study is based on the enhancement of the capability of functional pavement to actively degrade the residual exhaust gas in the road domain, and aims to promote the new development of green road field.
金娇, 刘墨晗, 刘帅, 陈柏臻, 刘欣宇. 基于生态路面减排理念下的CeO2柱撑蒙脱土改性沥青及其催化性能研究[J]. 材料导报, 2022, 36(16): 22040157-7.
JIN Jiao, LIU Mohan, LIU Shuai, CHEN Bozhen, LIU Xinyu. Study on CeO2 Pillared Montmorillonite Modified Asphalt and Its Catalytic Performance Based on the Emission Reduction of Ecological Pavement. Materials Reports, 2022, 36(16): 22040157-7.
1 Jin J, Xiao T, Zheng J L, et al. Construction and Building Materials, 2018, 190, 235. 2 Jin J, Liu S, Gao Y C, et al. Construction and Building Materials, 2021, 272, 121930. 3 Roshani H, Dessouky S, Montoya A, et al. Applied Energy, 2016, 182, 210. 4 Jin J, Gao Y C, Wu Y R, et al. Powder Technology, 2021, 377, 212. 5 Jin J, Tan Y Q, Liu R, et al. Powder Technology, 2018, 329, 107. 6 Jin J, Xiao T, Tan Y Q, et al. Journal of Cleaner Production, 2018, 205, 339. 7 Tahir M, Tahir B, Amin N A S. Materials Research Bulletin, 2015, 63, 13. 8 Lu H, Ye F, Yuan J, et al. Construction and Building Materials, 2018, 187, 1147. 9 Zhang F, Li Y H, Qi M Y, et al. Applied Catalysis B: Environmental, 2020, 268, 118380. 10 Wang H C, Jin J, Liu S, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2137(in Chinese). 王海成, 金娇, 刘帅, 等.中南大学学报(自然科学版), 2021, 52(7), 2137. 11 Zhang P, Liu B, Du Y P, et al. Modern Chemical Industry, 2020, 40(10), 26(in Chinese). 张鹏, 刘斌, 杜燕萍,等.现代化工, 2020, 40(10), 26. 12 Lin Q, Li L L, Wang W, et al. Journal of the Chinese Ceramic Society, 2021, 49(3), 544(in Chinese). 林青, 李玲玲, 王威,等.硅酸盐学报, 2021, 49(3), 544. 13 Li X. Journal of the Chinese Ceramic Society, 2018, 46(10), 1408(in Chinese). 李曦.硅酸盐学报, 2018, 46(10), 1408. 14 Ma J Y, Geng Y L. Journal of the Chinese Ceramic Society, 2018, 46(8), 1178(in Chinese). 马继艳, 耿延玲.硅酸盐学报, 2018, 46(8), 1178. 15 Wang H, Deng H X, Hao S Y. Chinese Journal of Inorganic Chemistry, 2017, 33(2), 285(in Chinese). 王辉, 邓黄秀, 郝仕油.无机化学学报, 2017, 33(2), 285. 16 Sehgal A, Lalatonne Y, Berret J F, et al. Langmuir, 2005, 21(20), 9359. 17 Kamada K, Kang J H, Paek S M, et al. Journal of Physics and Chemistry of Solids, 2012, 73(12), 1478. 18 Zhang G K, Ding X M, He F S, et al. Langmuir, 2008, 24(3), 1026. 19 Xie H X, Wu X L, Wang X W, et al. Journal of China University of Mining & Technology, 2010, 39(1), 145(in Chinese). 谢洪学,吴秀玲,王小伟,等. 中国矿业大学学报,2010,39(1),145. 20 Tuo B Y, Long S, Zhao X X, et al. Journal of the Chinese Ceramic Society, 2019, 47(4), 450(in Chinese). 庹必阳, 龙森, 赵徐霞, 等. 硅酸盐学报, 2019, 47(4), 450. 21 Chen G Y, Wang X Q, Zhao C, et al. Journal of Wuhan University of Technology (Materials Science Edition), 2014, 29(3), 455. 22 Tan Y Q, Jin J, Zheng J L, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(8), 2636(in Chinese). 谭彦卿, 金娇, 郑健龙,等. 硅酸盐通报, 2017, 36(8), 2636. 23 Ma R, Zhang S, Wen T, et al. Catalysis Today, 2019, 335, 20. 24 Jin J, Gao Y C, Wu Y R, et al. Construction and Building Materials, 2021, 268, 121072. 25 Jin J, Gao Y C, Li R, et al. China Journal of Highway and Transport, 2022, http://kns.cnki.net/kcms/detail/61.1313.U.20220410.2331.012.html(in Chinese) 金娇, 高玉超, 李锐,等. 中国公路学报, 2022,http://kns.cnki.net/kcms/detail/61.1313.U.20220410.2331.012.html. 26 Oldham D, Mallick R, Fini E H. Construction and Building Materials, 2021, 269, 121302. 27 Zhang H L, Zhu C Z, Zhang B L, et al. Journal of Building Materials, 2014, 17(1), 172(in Chinese). 张恒龙, 朱崇政, 张葆琳, 等. 建筑材料学报, 2014, 17(1), 172. 28 Feng Z G, Zhang P, Sun S A, et al. Journal of Building Materials, 2021, 24(2), 362(in Chinese). 冯振刚, 张沛, 孙思敖,等. 建筑材料学报, 2021, 24(2), 362 . 29 Li Z X, Zeng H Y, Gohi B F C A, et al. Applied Surface Science, 2020, 507, 145110. 30 Chen Z, Zhang D, Zhang Y, et al. Construction and Building Materials, 2021, 273, 122054. 31 Xiong Z, Xu Z, Li Y, et al. Applied Surface Science, 2020, 507, 145095.