Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 22040157-7    https://doi.org/10.11896/cldb.22040157
  低碳生态路面材料 |
基于生态路面减排理念下的CeO2柱撑蒙脱土改性沥青及其催化性能研究
金娇1,*, 刘墨晗1, 刘帅1, 陈柏臻2, 刘欣宇1
1 长沙理工大学交通运输工程学院,长沙 410114
2 湖北交投建设集团有限公司,武汉 430050
Study on CeO2 Pillared Montmorillonite Modified Asphalt and Its Catalytic Performance Based on the Emission Reduction of Ecological Pavement
JIN Jiao1,*, LIU Mohan1, LIU Shuai1, CHEN Bozhen2, LIU Xinyu1
1 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 Hubei Communications Investment Construction Group Co., Ltd., Wuhan 430050, China
下载:  全 文 ( PDF ) ( 17348KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 路面耐久性提升及功能性开发是目前道路领域现阶段研究的热点。本工作采用液相沉淀法制备了Ce-MMT新型绿色复合材料,对改性前后的蒙脱土的结构组成和微观形貌等进行分析对比,发现CeO2成功进入蒙脱土层间形成柱撑结构,且新型复合材料在紫外光和可见光区域的吸收能力得到增强。此外,对不同掺量的Ce-MMT改性沥青的高低温性能、抗老化性能以及光催化降解尾气效率进行了探究。结果表明:在4%~6%(质量分数,下同)掺量范围内,Ce-MMT可以显著提高沥青的高温性能和抗老化性能,且6%掺量的改性沥青在模拟汽车尾气实验中反应120 min后,对NO的降解效率可高达50.8%。本研究基于功能型路面主动降解路域残余尾气能力的提升,旨在促进绿色道路领域新发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金娇
刘墨晗
刘帅
陈柏臻
刘欣宇
关键词:  蒙脱土  纳米柱撑  改性沥青  老化  尾气降解    
Abstract: The improvement of pavement durability and functional development are the current research hotspots in the field of road. The CeO2 pillared montmorillonite (Ce-MMT) composite modifier was prepared by the liquid-phase precipitation method. By analyzing the structural composition and microscopic characterization, it was found that CeO2 successfully entered the interlayer of montmorillonite to form a pillared structure, and the absorptive ability of the new composite material in the ultraviolet and visible light regions was significantly enhanced. The high and low-tempe-rature performance, anti-aging performance, and catalytic degradation efficiency of modified asphalt with different Ce-MMT content were also studied. The results show that Ce-MMT can effectively improve the high-temperature performance and the anti-aging performance of the asphalt, when the content range of the modifier is 4wt%—6wt%. Besides, the Ce-MMT modified asphalt with a content of 6% can degrade NO up to 50.8% after reacting for 120 min in the simulated automobile exhaust test. This study is based on the enhancement of the capability of functional pavement to actively degrade the residual exhaust gas in the road domain, and aims to promote the new development of green road field.
Key words:  montmorillonite    nano-pillar    modified asphalt    aging    exhaust degradation
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414  
基金资助: 国家自然科学基金(52174237);湖南创新型省份建设专项(2020RC3039);湖南省杰出青年科学基金(2022JJ10051);长沙市科技计划项目(kq2106042)
通讯作者:  *jinjiao@csust.edu.cn   
作者简介:  金娇,长沙理工大学交通运输工程学院副教授、博士研究生导师,中国科协青年人才托举工程入选者。2015年博士毕业于中南大学后到长沙理工大学工作至今。研究方向为道路结构与材料。发表论文40余篇,获得教育部科学技术进步奖一等奖等科研奖励6项。
引用本文:    
金娇, 刘墨晗, 刘帅, 陈柏臻, 刘欣宇. 基于生态路面减排理念下的CeO2柱撑蒙脱土改性沥青及其催化性能研究[J]. 材料导报, 2022, 36(16): 22040157-7.
JIN Jiao, LIU Mohan, LIU Shuai, CHEN Bozhen, LIU Xinyu. Study on CeO2 Pillared Montmorillonite Modified Asphalt and Its Catalytic Performance Based on the Emission Reduction of Ecological Pavement. Materials Reports, 2022, 36(16): 22040157-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040157  或          http://www.mater-rep.com/CN/Y2022/V36/I16/22040157
1 Jin J, Xiao T, Zheng J L, et al. Construction and Building Materials, 2018, 190, 235.
2 Jin J, Liu S, Gao Y C, et al. Construction and Building Materials, 2021, 272, 121930.
3 Roshani H, Dessouky S, Montoya A, et al. Applied Energy, 2016, 182, 210.
4 Jin J, Gao Y C, Wu Y R, et al. Powder Technology, 2021, 377, 212.
5 Jin J, Tan Y Q, Liu R, et al. Powder Technology, 2018, 329, 107.
6 Jin J, Xiao T, Tan Y Q, et al. Journal of Cleaner Production, 2018, 205, 339.
7 Tahir M, Tahir B, Amin N A S. Materials Research Bulletin, 2015, 63, 13.
8 Lu H, Ye F, Yuan J, et al. Construction and Building Materials, 2018, 187, 1147.
9 Zhang F, Li Y H, Qi M Y, et al. Applied Catalysis B: Environmental, 2020, 268, 118380.
10 Wang H C, Jin J, Liu S, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2137(in Chinese).
王海成, 金娇, 刘帅, 等.中南大学学报(自然科学版), 2021, 52(7), 2137.
11 Zhang P, Liu B, Du Y P, et al. Modern Chemical Industry, 2020, 40(10), 26(in Chinese).
张鹏, 刘斌, 杜燕萍,等.现代化工, 2020, 40(10), 26.
12 Lin Q, Li L L, Wang W, et al. Journal of the Chinese Ceramic Society, 2021, 49(3), 544(in Chinese).
林青, 李玲玲, 王威,等.硅酸盐学报, 2021, 49(3), 544.
13 Li X. Journal of the Chinese Ceramic Society, 2018, 46(10), 1408(in Chinese).
李曦.硅酸盐学报, 2018, 46(10), 1408.
14 Ma J Y, Geng Y L. Journal of the Chinese Ceramic Society, 2018, 46(8), 1178(in Chinese).
马继艳, 耿延玲.硅酸盐学报, 2018, 46(8), 1178.
15 Wang H, Deng H X, Hao S Y. Chinese Journal of Inorganic Chemistry, 2017, 33(2), 285(in Chinese).
王辉, 邓黄秀, 郝仕油.无机化学学报, 2017, 33(2), 285.
16 Sehgal A, Lalatonne Y, Berret J F, et al. Langmuir, 2005, 21(20), 9359.
17 Kamada K, Kang J H, Paek S M, et al. Journal of Physics and Chemistry of Solids, 2012, 73(12), 1478.
18 Zhang G K, Ding X M, He F S, et al. Langmuir, 2008, 24(3), 1026.
19 Xie H X, Wu X L, Wang X W, et al. Journal of China University of Mining & Technology, 2010, 39(1), 145(in Chinese).
谢洪学,吴秀玲,王小伟,等. 中国矿业大学学报,2010,39(1),145.
20 Tuo B Y, Long S, Zhao X X, et al. Journal of the Chinese Ceramic Society, 2019, 47(4), 450(in Chinese).
庹必阳, 龙森, 赵徐霞, 等. 硅酸盐学报, 2019, 47(4), 450.
21 Chen G Y, Wang X Q, Zhao C, et al. Journal of Wuhan University of Technology (Materials Science Edition), 2014, 29(3), 455.
22 Tan Y Q, Jin J, Zheng J L, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(8), 2636(in Chinese).
谭彦卿, 金娇, 郑健龙,等. 硅酸盐通报, 2017, 36(8), 2636.
23 Ma R, Zhang S, Wen T, et al. Catalysis Today, 2019, 335, 20.
24 Jin J, Gao Y C, Wu Y R, et al. Construction and Building Materials, 2021, 268, 121072.
25 Jin J, Gao Y C, Li R, et al. China Journal of Highway and Transport, 2022, http://kns.cnki.net/kcms/detail/61.1313.U.20220410.2331.012.html(in Chinese)
金娇, 高玉超, 李锐,等. 中国公路学报, 2022,http://kns.cnki.net/kcms/detail/61.1313.U.20220410.2331.012.html.
26 Oldham D, Mallick R, Fini E H. Construction and Building Materials, 2021, 269, 121302.
27 Zhang H L, Zhu C Z, Zhang B L, et al. Journal of Building Materials, 2014, 17(1), 172(in Chinese).
张恒龙, 朱崇政, 张葆琳, 等. 建筑材料学报, 2014, 17(1), 172.
28 Feng Z G, Zhang P, Sun S A, et al. Journal of Building Materials, 2021, 24(2), 362(in Chinese).
冯振刚, 张沛, 孙思敖,等. 建筑材料学报, 2021, 24(2), 362 .
29 Li Z X, Zeng H Y, Gohi B F C A, et al. Applied Surface Science, 2020, 507, 145110.
30 Chen Z, Zhang D, Zhang Y, et al. Construction and Building Materials, 2021, 273, 122054.
31 Xiong Z, Xu Z, Li Y, et al. Applied Surface Science, 2020, 507, 145095.
[1] 孟子毅, 李静, 蒯荣, 雷乾杰, 付旭东, 张荣, 胡圣飞, 刘清亭. 微生物矿化改性蒙脱土补强天然橡胶的效果[J]. 材料导报, 2022, 36(Z1): 21090113-6.
[2] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[3] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[4] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[5] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[6] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[7] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[8] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[9] 陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
[10] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[11] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[12] 刘玲, 衣军勇, 肖刚, 方伟, 崔景亮, 田洪雷, 赵曰琦. 蒙脱土对聚羧酸减水剂的吸附行为研究[J]. 材料导报, 2021, 35(z2): 158-162.
[13] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[14] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[15] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed