Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050328-10    https://doi.org/10.11896/cldb.22050328
  宇航材料 |
3D打印天线罩技术研究进展
李俊生1, 李端1,*, 李学超1, 高世涛2, 王衍飞1, 万帆1, 刘荣军1
1 国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
2 中国人民解放军96901部队31分队,北京 100094
Technological Advances in 3D Printing of Radomes
LI Junsheng1, LI Duan1,*, LI Xuechao1, GAO Shitao2, WANG Yanfei1, WAN Fan1, LIU Rongjun1
1 State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Unit 31 of Unit 96901, PLA, Beijing 100094, China
下载:  全 文 ( PDF ) ( 4068KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天线罩是位于飞行器头部集防热、透波、承载等多功能于一体的结构/功能部件,高性能天线罩的设计与制备成为新型飞行器研制的瓶颈之一。3D打印技术是近年来发展的增材制造新技术,能够实现复杂结构的一体化成型,克服传统成型工艺的各种局限性,在天线罩领域具有广阔的应用前景。本文概括了常用3D打印技术的特点,分别从3D打印天线罩模具制备、3D打印天线罩结构设计、3D打印天线罩材料成型、3D打印设备优化四个方面,综述了3D打印技术在天线罩领域的研究现状,并对其未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李俊生
李端
李学超
高世涛
王衍飞
万帆
刘荣军
关键词:  3D打印  天线罩  模具  透波材料  设计    
Abstract: Radome is a structural/functional component located in the front of aircraft with the function of heat resistance, wave-transmittance and load-bearing. The design and preparation of high performance radomes has become one of the bottlenecks in the development of new aircraft. 3D printing technology is a recently developed novel processing of additive manufacture, which is able to integrate complex structures. This techno-logy is prospective in the field of radome since it can overcome the limitations of traditional processes. In this review, the progress on 3D printing of radome techniques in terms of 3D printing radome mold, 3D printing sandwich structure, 3D printing radome materials and 3D printing equipment optimization are summarized, and the future development is also prospected.
Key words:  3D printing    radome    mold    wave-transparent material    design
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(52172078)
通讯作者:  * duan_li_2016@163.com   
作者简介:  李俊生,国防科技大学新型陶瓷纤维及其复合材料重点实验室副研究员。主要研究领域为高温透波材料。主持国家自然科学基金、预研项目等国家和军队科研项目10余项,获授权国家发明专利20余项。
李端,国防科技大学新型陶瓷纤维及其复合材料重点实验室副研究员。2016年于瑞典斯德哥尔摩大学材料化学专业博士毕业。主要从事新型电磁功能材料、多孔结构/功能陶瓷、陶瓷快烧技术等研究。先后主持国家自然科学基金面上/青年项目、湖南省自然科学基金等课题10余项。在国内外重要期刊发表学术论文50篇,获授权国家发明专利21项,出版学术著作3部。
引用本文:    
李俊生, 李端, 李学超, 高世涛, 王衍飞, 万帆, 刘荣军. 3D打印天线罩技术研究进展[J]. 材料导报, 2022, 36(22): 22050328-10.
LI Junsheng, LI Duan, LI Xuechao, GAO Shitao, WANG Yanfei, WAN Fan, LIU Rongjun. Technological Advances in 3D Printing of Radomes. Materials Reports, 2022, 36(22): 22050328-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050328  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050328
1 Lei J X. Journal of Ceramics, 2019, 40 (3), 277(in Chinese).
雷景轩.陶瓷学报, 2019, 40 (3), 277.
2 Kandi K K, Thallapalli N, Chilakalapalli S P R.International Journal of Applied Ceramic Technology, 2015, 12(5), 909.
3 Suzdal'tsev E I.Refractories and Industrial Ceramics, 2015, 55(5), 377.
4 Zhu C Y. Study on the preparation and properties of wave-transparent materials for 3D printing. Master's Thesis, National University of Defense Technology, China, 2017(in Chinese).
朱晨颖.用于3D打印的透波材料制备及性能研究. 硕士学位论文, 国防科技大学, 2017.
5 Wang T, Lu X, Wang A.International Journal of Applied Ceramic Technology, 2020, 17(6), 2477.
6 Zhou S, Mei H, Chang P, et al.Coordination Chemistry Reviews, 2020, 422, 213486.
7 Chen Z, Sun X, Shang Y, et al.Journal of Advanced Ceramics, 2021, 10(2), 195.
8 Saroia J, Wang Y, Wei Q, et al.International Journal of Advanced Manufacturing Technology, 2020, 106(5), 1695.
9 Ngo T D, Kashani A, Imbalzano G, et al.Composites Part B: Enginee-ring, 2018, 143, 172.
10 Zhang H, Huang L, Tan M, et al.Micromachines, 2022, 13(1), 81.
11 Kalsoom U, Nesterenko P N, Paull B.RSC Advances, 2016, 6(65), 60355.
12 Man Y, Ding G, Luo X, et al.Journal of Asian Ceramic Societies, 2021, 9(4), 1377.
13 Chen Z, Li Z, Li J, et al.Journal of the European Ceramic Society, 2018, 39(4), 661.
14 Cai J, Zhang B, Zhang M, et al.Journal of Central South University of Technology, 2021, 28(4), 983.
15 Wang H J. Research on key technologies of additive manufacturing of high purity quartz ceramic based on thermosetting bonding. Master's Thesis, Tianjin University, China, 2019(in Chinese).
王皓吉.基于热固粘结的高纯石英陶瓷增材制造关键技术研究. 硕士学位论文, 天津大学, 2019.
16 Rasaki S A, Xiong D, Xiong S, et al.Journal of Advanced Ceramics, 2021, 10(3), 442.
17 Kang J W, Ma Q X.China Foundry, 2017, 14(3), 157.
18 Jiang S S, Zhou Y. Journal of Ceramics, 2019, 40(2), 217(in Chinese).
蒋三生, 周洋. 陶瓷学报, 2019, 40(2), 217.
19 Yang S J, Xu L, Yin E H, et al. New Technology & New Process, 2017(4), 84(in Chinese).
杨尚杰, 徐琳, 尹恩怀, 等.新技术新工艺, 2017(4), 84.
20 Gao W, Ding G Q, Luo X D, et al. Refractories & Lime, 2021, 46(6), 56(in Chinese).
高伟(译), 丁国强(译), 罗旭东(译), 等.耐火与石灰, 2021, 46(6), 56.
21 Du R, Yan H W, Zhang X Q. Shipboard Electronic Countermeasure, 2020, 43(5), 82(in Chinese).
杜睿, 严厚伟, 张晓庆.舰船电子对抗, 2020, 43(5), 82.
22 Zhao X C. Design and compression energy absorption of Kagome lattice sandwich structure. Master's Thesis, Changchun University of Technology, China, 2021(in Chinese).
赵兴辰. Kagome点阵夹层结构设计与压缩吸能特性研究. 硕士学位论文, 长春工业大学, 2021.
23 Li T T, Wang L F.Composite Structure, 2017, 175, 46.
24 Qiu Y, Wang J C, Hou Y X, et al. Wireless Internet Technology, 2019, 16(18), 121(in Chinese).
邱月, 王俊成, 侯宇翔, 等.无线互联科技, 2019, 16(18), 121.
25 Sun L J, Dong P, Zeng Y, et al. Journal of the Chinese Ceramic Society, 2021, 49(9), 1853(in Chinese).
孙立君, 董鹏, 曾勇, 等.硅酸盐学报, 2021, 49(9), 1853.
26 Yazdani S H, Akbarzadeh A H, Mirbolghasemi A, et al.Materials and Design, 2018, 160, 179.
27 Dikshit V, Yap Y L, Goh G D, et al. In: 37th Riso International Symposium on Materials Science-Understanding Performance of Composite Materials-Mechanisms Controlling Properties. Riso, Denmark, 2016, pp. 012017.
28 Liu L Q, Xiao X L, Dong K, et al. China Plastics Industry, 2020, 48(1), 91(in Chinese).
刘良强, 肖学良, 董科, 等.塑料工业, 2020, 48(1), 91.
29 Gao S Y. Experimental investigation on mechanical property of ZrO2 hone-ycomb sandwich structures prepared by 3D printing. Master's Thesis, Shanghai University of Applied Technology, China, 2021(in Chinese).
高淑悦. 基于3D打印氧化锆陶瓷的夹层结构力学性能研究. 硕士学位论文, 上海应用技术大学,2021.
30 Wang R, Shang J, Li X, et al.Rapid Prototyping Journal, 2018, 24(2), 261.
31 Dankov P I.In: 48th European Microwave Conference (EuMC). Madrid, Spain, 2018, pp. 823.
32 Hong Y S, Lu X F, Zhu X L, et al.Journal of Reinforced Plastics and Composites, 2018, 37(16), 1072.
33 Che J K, Chen C C. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego, CA, USA, 2017, pp. 695.
34 Wang X, Jiang M, Zhou Z W, et al.Composites Part B-Engineering, 2017, 110, 442.
35 Ren Q C, Cai C D, Deng J, et al. Technology & New Process, 2017(11), 7(in Chinese).
任清川, 蔡成德, 邓俊, 等.新技术新工艺,2017(11), 7.
36 Wang J L, Xie H, Weng Z, et al.Materials & Design, 2016, 105, 152.
37 Graf D, Qazzazie A, Hanemann T.Materials, 2020, 13(11), 2587.
38 Zgalat-Lozynskyy O, Matviichuk O, Tolochyn O, et al.Powder Metallurgy and Metal Ceramics, 2021, 59(9-10), 515.
39 Pei X Y, Chen L, Li J L, et al. Journal of Textile Research, 2016, 37(12), 153(in Chinese).
裴晓园, 陈利, 李嘉禄, 等.纺织学报, 2016, 37(12), 153.
40 Liu G, Zhang X, Chen X, et al.Materials Science & Engineering R-Reports, 2021, 145, 100596.
41 Zheng T Y. Research on key technologies of 3D printing of continuous fiber-reinforced composites. Master's Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
郑天宇.连续纤维复合材料3D打印关键技术研究. 硕士学位论文, 哈尔滨工业大学, 2020.
42 Sano Y, Matsuzaki R, Ueda M, et al.Additive Manufacturing, 2018, 24, 521.
43 Pinargote N W S, Smirnov A, Peretyagin N, et al.Nanomaterials, 2020, 10(7), 1300.
44 Peretyagin N Y, Pristinskii Y O, Kuznetsova E V, et al.Russian Engineering Research, 2020, 40(1), 94.
45 Smirnov A, Pinargote N W S, Peretyagin N, et al.Materials, 2020, 13(3), 687.
46 Zhang T. 3D printing of alumina ceramics through digital light proces-sing. Master's Thesis, Northeastern University, China, 2018(in Chinese).
张涛. 数字光投影3D打印制备氧化铝陶瓷的研究. 硕士学位论文, 东北大学, 2018.
47 Nie G L, Li Y H, Sheng P F. China Building Materials Science and Technology, 2021, 30(3), 79(in Chinese).
聂光临, 黎业华, 盛鹏飞.中国建材科技, 2021, 30(3), 79.
48 Jiao S Z, Qi W, Chen S, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(1), 260(in Chinese).
焦守政, 齐文, 陈松, 等.硅酸盐通报, 2020, 39(1), 260.
49 Zeng Y, Zhang Z J, Sun L J, et al. Journal of Inorganic Materials, 2022, 37(3), 333(in Chinese).
曾勇, 张子佳, 孙立君, 等.无机材料学报, 2022, 37(3), 333.
50 Pei W, Cao S, Yu J H. Materials for Mechanical Engineering, 2020, 44(11), 102(in Chinese).
裴伟, 曹澍, 俞经虎.机械工程材料, 2020, 44(11), 102.
51 Zhang H T. Preparation and mechanical properties of Al2O3 ceramics based on SLS/sol infiltration process. Master's Thesis, Harbin University of Technology, China, 2021(in Chinese).
张汉涛. 基于SLS/溶胶浸渗工艺的氧化铝陶瓷制备及力学性能研究. 硕士学位论文, 哈尔滨理工大学, 2021.
52 Tang H H, Chiu M L C, Yen H C.Journal of the European Ceramic So-ciety, 2011, 31(8), 1383.
53 Yang L, Zeng X, Ditta A, et al.Journal of Advanced Ceramics, 2020, 9(3), 312.
54 Cheng X Q. Microstructure of and properties of Al2O3(3D)/Al composite reinforced with Al2O3(3D) fabricated by 3D printing. Master's Thesis, Guilin University of Technology, China, 2020(in Chinese).
程小强. 3D打印Al2O3(3D)陶瓷增强铝基Al2O3(3D)/Al复合材料结构与性能. 硕士学位论文, 桂林理工大学, 2020.
55 Guo J Y, Xie H H, Yang X L, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(6), 1927(in Chinese).
郭金玉, 谢呵瀚, 杨小乐, 等.硅酸盐通报, 2021, 40(6), 1927.
56 Wu H, Cheng Y, Liu W, et al.Ceramics International, 2016, 42(15), 17290.
57 Li H, Liu Y, Liu Y, et al.Rare Metals, 2020, 39(5), 577.
58 Deckers J, Meyers S, Kruth J P, et al.Physics Procedia, 2014, 56, 117.
59 Cao S, Wei X, Sun Z, et al.Journal of Materials Processing Technology, 2015, 217, 241.
60 Devries M, Subhash G, Mcghee A, et al.Journal of the European Cera-mic Society, 2018, 38(9), 3305.
61 Wang S X, Li L, Bi L N, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(6), 1943(in Chinese).
王守兴, 李伶, 毕鲁南, 等.硅酸盐通报, 2021, 40(6), 1943.
62 Yan P F, Yan B, Wang L F, et al. Nonferrous Metal Materials and Engineering, 2018, 39(6), 12(in Chinese).
严鹏飞, 严彪, 王联凤, 等.有色金属材料与工程, 2018, 39(6), 12.
63 Wang M, Xie C, He R. et al.Journal of the American Ceramic Society, 2019, 102, 5117.
64 Yang Y, Guo X T, Tang J, et al. Journal of Inorganic Materials, 2022, 37(3), 267(in Chinese).
杨勇, 郭啸天, 唐杰, 等.无机材料学报, 2022, 37(3), 267.
65 Huang R, Jiang Q, Wu H, et al.Ceramic International, 2019, 45(4), 5158.
66 Zhang P J. Study on simulation optimization and material forming direct write 3D printing device based on silicon nitride ceramics. Master's Thesis, Guangdong University of Technology, China, 2021(in Chinese).
张鹏杰. 基于氮化硅陶瓷的直写式3D打印装置仿真优化与材料成型研究. 硕士学位论文, 广东工业大学, 2021.
67 Iyer S, Mcintosh J, Bandyopadhyay A, et al.International Journal of Applied Ceramic Technology, 2010, 5(2), 127.
68 Wilkes J, Hagedorn Y C, Meiners W, et al.Rapid Prototyping Journal, 2013, 19(1), 51.
69 Li H, Liu Y, Liu Y, et al.Journal of the European Ceramic Society, 2021, 41(4), 2938.
70 Shang L Y, Wu Q, Chai Y Q, et al. Electronic Components and Mate-rials, 2018, 37(2), 64(in Chinese).
尚立艳, 伍权, 柴永强, 等.电子元件与材料,2018, 37(2), 64.
71 Chen R, Duan W, Wang G, et al.Journal of the European Ceramic Society, 2021, 41(11), 5495.
72 Wang H Y. Preparation of h-BN-MAS composite by 3D printing. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese).
王会媛. 3D打印制备h-BN-MAS复合陶瓷. 硕士学位论文, 哈尔滨工业大学, 2018.
73 Wu Z, Liu W, Wu H, et al.Materials Chemistry and Physics, 2018, 207, 1.
74 Li X, Zhang L, Yin X.Scripta Materialia, 2012, 67, 380.
75 Li J P. Microstructure and properties of Si-B-N ceramics and ceramic matrix composites. Master's Thesis, Northwest University of Technology, China, 2018(in Chinese).
李建平.Si-B-N系透波陶瓷及其复合材料的微结构与性能. 硕士学位论文, 西北工业大学, 2018.
76 Xiao S, Mei H, Han D, et al.Ceramic International, 2018, 44(12), 14122.
77 Moon Y W, Choi I J, Koh Y H, et al.Ceramic International, 2015, 41(9), 12371.
78 Zhang G, Chen H, Yang S B, et al.Journal of the European Ceramic Society, 2018, 38(11), 4014.
79 Tubío C R, Rama A, Gómez M, et al.Ceramic International, 2018, 44(5), 5760.
80 Singh B, Kumar R, Chohan J S.Materials Today: Proceedings, 2020, 33, 1562.
81 Paolo C, Gabriela M, Ralf R, et al. Journal of the American Ceramic Society, 2010, 93(7), 1805.
82 Kashiwagi T, Du F M, Douglas J F, et al.Nature Materials, 2005, 4(12), 928.
83 Zhao Z, Zhou G, Yang Z, et al.Journal of Advanced Ceramics, 2020, 9(4), 403.
84 Zhao Z. Research on direct writing 3D printing of continuous SiO2 fiber reinforced SiO2/phosphate composite and its properties. Master's Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
赵哲.直写式3D打印连续SiO2纤维增强SiO2/磷酸盐复合材料及其性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
85 Yu D H. Advanced Ceramics, 2022, 43(1), 39(in Chinese).
于德海.现代技术陶瓷, 2022, 43(1), 39.
86 Laura del M B, Ginebra M P.Journal of the European Ceramic Society, 2021, 41(16), 18.
87 Mansfield B, Torres S, Yu T Y, et al.In: 2019 Manufacturing Science and Engineering Conference. Erie, Pennsylvania, USA, 2019, pp. V001T01A001.1.
88 Jang S, Park S, Bae C J.Biomedical Engineering Letters, 2020, 10(4), 493.
89 Lee J Y, An J, Chua C K.Applied Materials Today, 2017, 7, 120.
90 Hu K, Wei Y, Lu Z, et al.3D Printing and Additive Manufacturing, 2018, 5(4), 311.
91 Grazioso S, Maio M D, Di Gironimo G D.International Journal of Advanced Manufacturing Technology, 2019, 101(5-8), 2027.
92 Yang L, Miyanaji H, Ram D J, et al.In: 11th International Symposium on Ceramic Materials and Components for Energy and Environmental Applications (CMCEE). Vancouver, Canada, 2016, pp. 43.
93 Good A, Roper D, Mirotznik M.In: 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver, Canada, 2015, pp. 1318.
94 Good A J, Roper D, Good B, et al.Smart Materials and Structures, 2017, 26, 095036.
95 Zhang J, Zhou J, Duan G L. Materials Reports, 2022, 36(8), 20080135(in Chinese).
张静, 周婧, 段国林.材料导报, 2022, 36(8), 20080135.
[1] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[2] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[3] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[4] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[5] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[6] 刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
[7] 许镇, 陈旋, 吴晓春. 回火工艺对含铜塑料模具钢在中性氯化钠溶液中腐蚀行为的影响[J]. 材料导报, 2022, 36(20): 21030169-8.
[8] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[9] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[10] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[11] 邹伟, 黄锦涛, 程春, 王光宏, 王伟平, 刘屹东, 闵永刚, 吕建忠. 基于增材制造技术快速模具制造研究进展[J]. 材料导报, 2022, 36(19): 21020083-9.
[12] 朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 黄锦涛, 闵永刚. 光敏聚酰亚胺:低温固化设计策略[J]. 材料导报, 2022, 36(19): 21030016-9.
[13] 许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
[14] 吴国荣, 陈旭辉, 黄诗雯. 汽车前置保险杠材料造型与安全性比较研究[J]. 材料导报, 2022, 36(18): 22010019-7.
[15] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed