Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21030169-8    https://doi.org/10.11896/cldb.21030169
  金属与金属基复合材料 |
回火工艺对含铜塑料模具钢在中性氯化钠溶液中腐蚀行为的影响
许镇1,2, 陈旋1,2,3, 吴晓春1,2,3,*
1 上海大学材料科学与工程学院,上海 200444
2 省部共建高品质特殊钢冶金与制备国家重点实验室,上海 200444
3 上大鑫仑材料科技(上海)有限公司,上海 201999
Effect of Tempering Treatment on Corrosion Behavior of Cu-bearing Plastic Mold Steel in Neutral Sodium Chloride Solution
XU Zhen1,2, CHEN Xuan1,2,3, WU Xiaochun1,2,3,*
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
3 Shangda Xinlun Material Technology (Shanghai) Co., Ltd., Shanghai 201999, China
下载:  全 文 ( PDF ) ( 8350KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用场发射透射电子显微镜、扫描电子显微镜和白光干涉仪等分析手段对比研究了含铜塑料模具钢4Cr13Cu及4Cr13在3.5%(质量分数)NaCl中性溶液中的腐蚀行为。结果表明,4Cr13Cu在250 ℃回火条件下的耐蚀性最佳。600 ℃高温回火促进了4Cr13Cu纳米级富铜相的析出,使得4Cr13Cu钝化膜施主密度比4Cr13高约12.4%,钝化膜稳定性降低。腐蚀初期,点蚀沿深度和广度方向开始发展,紧接着向深度方向发展至560~660 μm范围,最后转向广度方向。而表面距离较近的小点蚀长大、合并,逐步形成了大尺寸点蚀坑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许镇
陈旋
吴晓春
关键词:  塑料模具钢  4Cr13  富铜相  点蚀  电化学    
Abstract: The corrosion behavior of Cu-bearing plastic mold steels 4Cr13Cu and 4Cr13 in 3.5wt% NaCl neutral solution was investigated by transmission electron microscope (TEM), scanning electron microscope (SEM) and white-light interferometer. The results indicate that it is capable of 4Cr13Cu tempered at 250 ℃ to acquire a better corrosion resistance. The nano-scale Cu-rich precipitates of 4Cr13Cu tempered at 600 ℃ increase the donor density of the passive film by about 12.4% compared with 4Cr13, and reduce the stability of passive film. In the early stage of corrosion process, the pits of 4Cr13Cu begin to grow both horizontally and vertically, then propagate preferentially towards a vertical direction with a depth range of 560—660 μm. Finally, the pits expand to horizontal direction. Small pitting in close proximity to the surface grows and merges, gradually forming large size pitting pits.
Key words:  plastic mold steel    4Cr13    Cu-rich precipitate    pitting    electrochemical
发布日期:  2022-10-26
ZTFLH:  TG142  
  TG178  
基金资助: 国家重点研发计划(2016YFB0300400;2016YFB0300404);省部共建高品质特殊钢冶金与制备国家重点实验室开放课题(SKLASS 2017-09)
通讯作者:  *wuxiaochun@t.shu.edu.cn   
作者简介:  许镇,本科毕业于上海工程技术大学材料工程学院,现为上海大学材料科学与工程学院硕士研究生。研究方向为先进模具材料及其表面处理。
吴晓春,上海大学教授、博士研究生导师,我国“十一五”国家科技支撑计划课题“高品质模具钢锻材关键技术开发”和“十三五”国家重点研发计划项目“高性能工模具钢及应用”项目的首席专家。博士毕业于华中科技大学,主要从事高性能工模具钢材料及其表面处理的研究。近年来完成模具相关科研项目110余项,发表论文350余篇,获发明专利授权20项。
引用本文:    
许镇, 陈旋, 吴晓春. 回火工艺对含铜塑料模具钢在中性氯化钠溶液中腐蚀行为的影响[J]. 材料导报, 2022, 36(20): 21030169-8.
XU Zhen, CHEN Xuan, WU Xiaochun. Effect of Tempering Treatment on Corrosion Behavior of Cu-bearing Plastic Mold Steel in Neutral Sodium Chloride Solution. Materials Reports, 2022, 36(20): 21030169-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030169  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21030169
1 Fan L, Chen D J, Yu J H, et al. Journal of Soochow University (Engineering Science Edition), 2006(6), 47(in Chinese).
樊琳, 程东霁, 于江海, 等. 苏州大学学报(工科版), 2006(6), 47.
2 Geng H M, Wu X C, Wang H B, et al. Journal of Materials Science, 2008, 43(1), 83.
3 Li B B, Qu H P, Lang Y P, et al. Corrosion Science, 2020, 173, 108791.
4 Shi X B, Yan W, Xu D K, et al. Journal of Materials Science & Techno-logy, 2018, 34(12), 2480.
5 Hao X H, Dong J H, Wei J, et al. Corrosion Science, 2017, 121, 84.
6 Jeon S, Kim H, Kong K, et al. Materials Transactions, 2015, 56(1), 78.
7 Zhang X R, Zhao J L, Xi T, et al. Journal of Materials Science & Technology, 2018,34(11), 2149.
8 Jiang J, Xu D K, Xi T, et al. Corrosion Science, 2016, 113, 46.
9 Jeon S, Kim S, Lee I, et al.Corrosion Science, 2011, 53(4), 1408.
10 Oguzie E E, Li J B, Liu Y Q, et al. Electrochimica Acta, 2010, 55(17), 5028.
11 Liu H, Wei J, Dong J H, et al.Journal of Materials Science & Technology, 2021,84,65.
12 Bonagani S K, Bathula V, Kain V. Corrosion Science, 2018, 131, 340.
13 Anantha K H, Ornek C, Ejnermark S, et al.Journal of The Electrochemical Society, 2017, 164(4),85.
14 San X Y, Zhang B, Wu B, et al. Corrosion Science, 2018, 130, 143.
15 Lei X W, Wang H Y, Mao F X, et al. Corrosion Science, 2018, 131, 164.
16 Adán-Más A, Silva T M, Guerlou-Demourgues L, et al. Electrochimica Acta, 2018, 289, 47.
17 Zeng L, Guo X P, Zhang G A, et al. Corrosion Science, 2018, 144, 258.
18 BenSalah M, Sabot R, Triki E, et al. Corrosion Science, 2014, 86, 61.
19 Macdonald D D. Electrochimica Acta, 2011, 56(4), 1761.
20 Wu K G, Briffod F, Ito K, et al. Materials Transactions, 2019, 60(10), 2151.
21 Zhao Y G, Liu W, Fan Y M, et al. Corrosion Science, 2020, 168, 108591.
22 Lee J, Kim S, Lee I, et al. Materials Transactions, 2012, 53(6), 1048.
23 Wang Y F, Cheng G X, Li Y. Corrosion Science, 2016, 111, 508.
24 Lu S Y. Effect of heat treatments on the microstructure and corrosion resistance of Cr13-type plastic mold steel. Ph.D. Thesis, Tsinghua University, China, 2015(in Chinese).
鲁思渊. 热处理工艺对Cr13型塑料模具钢组织与耐蚀性影响研究. 博士学位论文, 清华大学, 2015.
[1] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[2] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[3] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[4] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[5] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[6] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[7] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[8] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[9] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[10] 王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
[11] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[12] 纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
[13] 潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
[14] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[15] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed