Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20070278-8    https://doi.org/10.11896/cldb.20070278
  无机非金属及其复合材料 |
生物质炭材料:构建电化学传感器的理想修饰材料
鲁猷栾1, 穆新伟1, 黄乐舒1, 石震1, 郑寅1,2
1 湖北民族大学化学与环境工程学院,湖北 恩施 445000
2 国家民委超轻弹性体材料绿色制造重点实验室,湖北 恩施 445000
Biomass Carbon Material: an Ideal Modified Material for Constructing Electrochemical Sensor
LU Youluan1, MU Xinwei1, HUANG Leshu1, SHI Zhen1, ZHENG Yin1,2
1 College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, Hubei,China
2 Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Enshi 445000, Hubei,China
下载:  全 文 ( PDF ) ( 7221KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电化学传感器因具有灵敏度高、检出限低、响应性快等优点而在分析检测领域扮演着重要的角色。然而,传统的电极存在导电性差、响应信号弱、稳定性差等缺点,从而限制了电化学传感器的广泛应用。为解决这些问题,修饰材料被科研工作者们用于对电极进行改性处理以提高其性能。目前报道较多的修饰材料有石墨烯、碳纳米管、金属有机框架、导电聚合物等,但是这些材料存在制备过程繁琐、成本较高等问题或者导电性差、活性位点少等缺陷。与这些材料相比,生物质炭材料具有原料可再生、来源广泛、制备过程简便且导电性较好等优点,还能实现循环利用,符合当前绿色化学的理念。因此,生物质炭材料是一类极具潜力的、适用于构建电化学传感器的修饰材料。
本文根据生物质炭材料的原料来源将其分为植物基、动物基和微生物基炭材料,并归纳了物理活化热解法、化学活化热解法、水热炭化法及熔融盐炭化法等几种常见的制备方法;然后分析了影响以生物质炭材料构建的电化学传感器性能的几个因素,其中生物质炭材料的孔道结构和电导率对电化学传感器性能的影响最大; 最后介绍了以生物质炭材料构建的电化学传感器在化学检测和生物检测方面的应用现状,并对生物质炭材料在今后被用于电化学传感领域时需解决的问题进行了概括。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁猷栾
穆新伟
黄乐舒
石震
郑寅
关键词:  生物质炭材料  电化学传感器  修饰材料    
Abstract: Electrochemical sensors play an important role in the field of analysis and detection because of their high sensitivity, low detection limit and fast response. However, the conventional electrodes have the disadvantages of poor conductivity, weak response signal and poor stability, which limits the wide application of them. To solve these problems, modified materials are used by researchers to modify electrodes to improve their properties. There are many kinds of modified materials, such as graphene, carbon nanotubes, organometallic frame, conductive polymer, etc. However, these materials may have problems such as complicated preparation process, high cost, or poor electrical conductivity and less active site. Compared with these materials, biomass carbon materials have the advantages of renewable raw materials, wide source, simple preparation process and good conductivity, and can realize the recycling of biomass resources, which accords with the concept of green chemistry. Therefore, biomass carbon materials are a class of potential modified materials, and suitable for constructing electrochemical sensors.
According to the source of biomass carbon materials, it is divided into plant-based, animal-based and microbial-based carbon materials. Seve-ral common preparation methods of such materials are summarized, including physical activation pyrolysis, chemical activation pyrolysis, hydrothermal carbonization and molten salt carbonization. Then several factors affecting the performance of electrochemical sensors constructed with biomass carbon materials are analyzed, among which the pore structure and conductivity have the greatest influence. Finally, the application of electrochemical sensor based on biomass carbon material in chemical detection and biological detection is introduced, and the problems to be solved in the field of electrochemical sensing in the future are summarized.
Key words:  biomass carbon material    electrochemical sensor    modified material
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TQ15  
基金资助: 湖北省教育厅重点项目(D20191903);国家民委超轻弹性体材料绿色制造重点实验室开放基金;湖北民族大学硕士研究生科研创新资助项目(MYK2020002)
通讯作者:  zhengyin0617@163.com   
作者简介:  鲁猷栾,2019年6月毕业于湖北民族大学,获得工学学士学位。现为湖北民族大学化学与环境工程学院硕士研究生,在郑寅副教授的指导下进行研究。目前主要研究领域为材料化学、电分析化学。
郑寅,湖北民族大学化学与环境工程学院副教授、硕士研究生导师。2003年7月毕业于武汉工程大学制药工程专业,2013年7月于武汉大学应用化学专业取得博士学位。主要研究方向为材料化学和电分析化学。近年来,以第一作者和通讯作者在国内外期刊发表论文30余篇。
引用本文:    
鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
LU Youluan, MU Xinwei, HUANG Leshu, SHI Zhen, ZHENG Yin. Biomass Carbon Material: an Ideal Modified Material for Constructing Electrochemical Sensor. Materials Reports, 2022, 36(6): 20070278-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070278  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20070278
1 Chen A C, Chatterjee S. Chemical Society Reviews, 2013, 42, 5425.
2 Kimmel D W, Le Blanc G, Meschievitz M E, et al. Analytical Chemistry, 2012, 84(2), 685.
3 Gu J D, Qiang T T, Xu W T, et al. Journal of Chongqing University of Technology (Natural Science), 2021, 35(6), 122.
谷江东,强涛涛,徐卫涛,等.重庆理工大学学报(自然科学),2021, 35(6), 122.
4 Ahmad K, Kumara P, Mobin S M. Nanoscale Advances, 2020, 2, 502.
5 Alshahrani L A, Li X, Luo H, et al. Sensors, 2014, 14(12), 22274.
6 Naveen M H, Gurudatt N G, Shim Y B. Applied Materials Today, 2017, 9, 419.
7 Sandulescu R, Tertis M, Cristea C, et al. Biosensors-micro and nanoscale applications, IntechOpen, UK, 2015.
8 Lu H, Zhao X S. Sustainable Energ & Fuels, 2017, 1(6), 1265.
9 Dhyani V, Bhaskar T. Renewable Energy, 2018, 129, 695.
10 Li X, Li H, Liu T, et al. Sensors and Actuators B: Chemical, 2018, 255, 3248.
11 Apaydin-Varol E, Pütün A E. Journal of Analytical and Applied Pyrolysis, 2012, 98, 29.
12 Nagarajan S, Subramani K, Karnan M, et al. Energy & Fuel, 2017, 31(1), 977.
13 Zhao W, Luo L, Wu X, et al. Wood Science and Technology, 2019, 53, 227.
14 Yu X L, Zhang K Y, Tian N, et al. Materials Letters, 2015, 142, 193.
15 Anca-Couce A. Progress in Energy and Combustion Science, 2016, 53, 41.
16 Wang Y H, Zhao Z Y, Song W W, et al. Journal of Materials Science, 2019, 54(6), 4917.
17 Xu Y, Yang Z X, Zhang G J, et al. Journal of Cleaner Production, 2020, 264, 121645.
18 Wang Q, Cao Q, Wang X Y, et al. Journal of Power Sources, 2013, 225, 101.
19 Patel S, Han J, Qiu W, et al. Journal of Environmental Chemical Engineering, 2015, 3, 2368.
20 Hassan M M, Schiermeister L, Staiger M P. RSC Advances, 2015, 5, 55353.
21 Liu R R, Zhang H M, Liu S W, et al. Physical Chemistry Chemical Phy-sics, 2016, 18(5), 4095.
22 Launey M E, Buehler M J, Ritchie R O. Annual Review of Materials Research, 2010, 40, 25.
23 Hao P, Zhao Z H, Leng Y H, et al. Nano Energy, 2015, 15, 9.
24 Gong C C, Wang X Z, Ma D H, et al. Electrochimica Acta, 2016, 220, 331.
25 Gao Y, Xua S P, Yue Q Y, et al. Advanced Powder Technology, 2016, 27(4), 1280.
26 Raymundo-Pinero E, Cadek M, Beguin F. Advanced Functional Mate-rials, 2009, 19, 1032.
27 Tian Z W, Qiu Y, Zhou J C, et al. Materials Letters, 2016, 180, 162.
28 Xie Y W, Fang L, Cheng H W, et al. Journal of Materials Chemistry A, 2016, 4(40), 15612.
29 Yi L F, Xia Y, Tan Z N, et al. Journal of Cleaner Production, 2020, 264, 121558.
30 Akshaya K B, Vinay S B, Anitha V, et al. Journal of the Electrochemical Society, 2019, 166(13), 1097.
31 Yallappa S, Shivakumar M, Nagashree K L, et al. Journal of the Electrochemical Society, 2018, 165(10), 614.
32 Gao K Z, Niu Q Y, Tang Q H, et al. Journal of Electronic Materials, 2018, 47(1), 337.
33 Chen L D, Yang S H, Huang J Y, et al. Materials Letters, 2018, 232, 187.
34 Jiang L L, Sheng L Z, Fan Z J. Science China Materials, 2018, 61(2), 133.
35 Mi J, Wang X R, Fan R J, et al. Energy & Fuels, 2012, 26(8), 5321.
36 Wei J M, Iglesia E. Journal of Catalysis, 2004, 224, 370.
37 Contescu C, Adhikari S, Gallego N, et al. Journal of Carbon Research, 2018, 4(3), 1.
38 Gao F L, Zhang J B, Ren M Y, et al. Chemistry Letters, 2020, 49(6), 652.
39 Wu Z, Tian K, Huang T, et al. ACS Applied Materials & Interfaces, 2018, 10(13), 11108.
40 Hou J H, Cao C B, Idrees F, et al. ACS Nano, 2015, 9(3), 2556.
41 Yu Z L, Li G C, Fechler N, et al. Angewandte Chemie-International Edition, 2016, 55, 1.
42 Wang J C, Kaskel S. Journal of Materials Chemistry, 2012, 22(45), 23710.
43 Wu X, Jiang L, Long C, et al. Nano Energy, 2015, 13, 527.
44 Qu S S, Wan J F, Dai C C, et al. Journal of Alloys and Compounds, 2018, 751, 107.
45 Chung D Y, Son Y J, Yoo J M, et al. ACS Applied Materials & Interfaces, 2017, 9(47), 41303.
46 Funke A, Ziegler F. Biofuels Bioproducts & Biorefining-Biofpr, 2010, 4(2), 160.
47 Libra J A, Ro K S, Kammann C, et al. Biofuels, 2011, 2(1), 71.
48 Kubo S, Tan I, White R J, et al. Chemistry of Materials, 2010, 22(24), 6590.
49 Ren Y M, Xu Q, Zhang J M, et al. ACS Applied Materials & Interfaces, 2014, 6, 9689.
50 Lu X, Jiang C, Hu Y, et al. Journal of Applied Electrochemistry, 2018, 48(1), 233.
51 Zhang J Q. International Journal of Electrochemical Science, 2018, 13, 5204.
52 Liu X, Antonietti M. Carbon, 2014, 69, 460.
53 Wang J, Ding B, Hao X, et al. Carbon, 2016, 102, 255.
54 Yin H, Lu B, Xu Y, et al. Environmental Science and Technology, 2014, 48(14), 8101.
55 Elumeeva K, Fechler N, Fellinger T P, et al. Materials Horizons, 2014, 1(6), 588.
56 Liu X, Giordano C, Antonietti M. Small, 2014, 10(1), 193.
57 Kong W, Zhao F, Guan H, et al. Journal of Materials Science, 2016, 51(14), 6793.
58 Liu B, Zhou X, Chen H, et al. Electrochimica Acta, 2016, 208, 55.
59 Li F, Zimmerman A R, Hu X, et al. Chemosphere, 2020, 254, 126866.
60 Lam S S, Lee X Y, Nam W L, et al. Journal of Chemical Technology & Biotechnology, 2019, 94(5), 1406.
61 Wang X, Gao Z, Chang J, et al. RSC Advances, 2015, 5(21), 15969.
62 Asgari G, Dayari A, Ghasemi M, et al. Journal of Molecular Liquids, 2019, 275, 251.
63 Simon P, Gogotsi Y. Nature Materials, 2008, 7(11), 845.
64 Beguin F, Presser V, Balducci A, et al. Advanced Materials, 2014, 26, 2219.
65 Chmiola J, Largeot C, Taberna P L, et al. Angewandte Chemie, 2008, 120, 3440.
66 Largeot C, Portet C, Chmiola J, et al. Journal of the American Chemical Society, 2008, 130(9), 2730.
67 Su D S, Schlgl R. Chemsuschem, 2010, 3(2), 136.
68 Xu B, Hou S, Cao G, et al. Journal of Materials Chemistry, 2012, 22(36), 19088.
69 Xu B, Zheng D F, Jia M Q, et al. Electrochimica Acta, 2013, 98, 176.
70 Chen L F, Huang Z H, Liang H W, et al. Advanced Functional Mate-rials, 2014, 24(32), 5104.
71 Li Q, Xu P, Gao W, et al. Advanced Materials, 2014, 26, 1378.
72 Sun L, Tian C G , Li M T, et al. Journal of Materials Chemistry A, 2013, 1, 6462.
73 Li K, Wan Z, Liu J, et al. ACS Omega, 2019, 4(1), 1191.
74 Veerakumar P, Veeramani V, Chen S M, et al. ACS Applied Materials & Interfaces, 2016, 8(2), 1319.
75 Guan J, Fang Y, Zhang T, et al. Electrocatalysis, 2020, 11(1), 59.
76 Hei Y S, Li X Q, Zhou X, et al. Analytica Chimica Acta, 2018, 1029, 15.
77 Sha T Z, Li X X, Liu J J, et al. Sensors and Actuators B: Chemical, 2018, 277, 195.
78 Zhang W J, Liu L, Li Y G, et al. Biosensors and Bioelectronics, 2018, 121, 96.
79 Kalinke C, Oliveira P R D, Emeterio M B S, et al. Electroanalysis, 2019, 31, 1.
80 Manavalan S, Veerakumar P, Chen S M, et al. ACS Omega, 2019, 4, 8907.
81 Chen D, Zhou H, Li H, et al. Scientific Reports, 2017, 7, 14985.
82 Liu S, Han T, Wang Z, et al. Electroanalysis, 2019, 31(3), 527.
83 Wang N, Hei Y S, Liu J J, et al. Analytica Chimica Acta, 2019, 1047, 36.
84 Anupama G, Maria D S S A, Cunha J R, et al. Vibrational Spectroscopy, 2018, 98, 111.
85 Han J, Zhao J, Li Z, et al. Journal of Electroanalytical Chemistry, 2018, 818, 149.
86 Mohanraj J, Durgalakshmi D, Rakkesh R A, et al. Journal of Colloid and Interface Science, 2020, 566, 463.
87 Bi Y L, Ye L H, Mao Y, et al. Biosensors & Bioelectronics, 2019, 140, 111.
88 Huang X Y, Cui B B, Ma Y S, et al. Analytica Chimica Acta, 2019, 1078, 125.
89 Martins G, Gogola J L, Gaetano F R, et al. Talanta, 2019, 204, 163.
90 Mohanraj P, Bhuvaneshwari S, Sreelekshmi M S, et al. Water Science & Technology, 2019, 80(11), 2058.
91 He L Z, Yang Y S, Kim J, et al. Chemical Engineering Journal, 2020, 384, 123276.
92 Ren H, Liu X, Yan L, et al. Sensors and Actuators B: Chemical, 2020, 312, 127979.
93 Shan B X, Ji Y H, Zhong Y B, et al. RSC Advances, 2019, 9(44), 25647.
94 Zhong X L, Yuan W Y, Kang Y J, et al. ChemElectroChem, 2016, 3, 144.
[1] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[2] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[3] 李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林. DNA电化学传感器对金属离子检测的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 115-120.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed