Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 22020109-5    https://doi.org/10.11896/cldb.22020109
  高熵合金* |
高熵合金FeCoNiCrP的制备和电催化析氧性能
潘冶, 钟旭, 朱银安, 陆韬, 于金
东南大学材料科学与工程学院,南京 211189
Preparation and Electrocatalytic Oxygen Evolution Performances of High-entropy Alloy FeCoNiCrP
PAN Ye, ZHONG Xu, ZHU Yin'an, LU Tao, YU Jin
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 4672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用机械合金化法制备FeCoNiCrP高熵合金纳米颗粒,将其负载在碳纤维纸上制成电催化剂电极,对合金进行电催化析氧性能测试。以循环伏安法对催化剂进行电化学激活后,FeCoNiCrP催化剂在1 mol/L KOH介质中驱动10 mA/cm2的电流密度所需过电位仅为286 mV,而激活前的催化剂所需的过电位为301 mV。与激活前相比,激活后的催化剂具有更低的塔菲尔斜率(27.6 mV/dec)、更大的双层电容(0.435 mF)以及20 h恒定电位测试下更优异的稳定性。循环伏安法激活导致合金表面发生重构,构建出核壳结构,形成有利于析氧过程的金属氧化物和羟基氧化物,从而有效提升催化剂的析氧性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘冶
钟旭
朱银安
陆韬
于金
关键词:  高熵合金  机械合金化  析氧反应  电化学激活    
Abstract: In this work, high-entropy alloy FeCoNiCrP nanoparticles were prepared by mechanical alloying method, and loaded onto carbon fiber paper as working electrode. The electrocatalysis oxygen evolution performance of the alloy was tested. Cyclic voltammetry was utilized to electrochemically activate the catalyst. After cyclic voltammetry activation, the FeCoNiCrP catalyst only requires an overpotential of 286 mV to drive a current density of 10 mA/cm2 in 1 mol/L KOH medium, better than its pristine catalyst. The activated catalyst also has a lower Tafel slope (27.6 mV/dec), a larger double-layer capacitance (0.435 mF) and the more excellent stability under 20 h testing at fixed potential. Cyclic voltammetry activation has an influence on surface morphology, which constructs a core-shell structure and forms metal oxides and hydroxyl oxides that are conducive to the oxygen evolution process, and ultimately enhances the oxygen evolution performance of the catalyst.
Key words:  high-entropy alloy    mechanical alloying    oxygen evolution reaction    electrochemical activation
发布日期:  2022-07-26
ZTFLH:  TB3  
基金资助: 国家自然科学基金(51671056);江苏省先进金属材料重点实验室(AMM 2021A02)
通讯作者:  panye@seu.edu.cn   
作者简介:  共同第一作者。
潘冶,东南大学材料科学与工程学院教授、博士、博士研究生导师。主要从事非晶与高熵合金、先进金属材料与组织控制等方面的研究。主持和承担国家级、省部级等科研项目20余项,获授权发明专利20余件,在国内外核心期刊上发表论文160余篇。
钟旭,东南大学材料科学与工程学院硕士研究生,主要从事高熵合金与新型电解水催化剂的研究。2019年6月于江苏南京获得工学学士学位。
引用本文:    
潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
PAN Ye, ZHONG Xu, ZHU Yin'an, LU Tao, YU Jin. Preparation and Electrocatalytic Oxygen Evolution Performances of High-entropy Alloy FeCoNiCrP. Materials Reports, 2022, 36(14): 22020109-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020109  或          http://www.mater-rep.com/CN/Y2022/V36/I14/22020109
1 Hu C L, Zhang L, Gong J L. Energy and Environmental Science, 2019, 12(9), 2620.
2 Gao J J, Tao H B, Liu B. Advanced Materials, 2021, 33(31), 2003786.
3 Huang K, Zhang B W, Wu J S, et al. Journal of Materials Chemistry A, 2020, 8(24), 11938.
4 Kuang M, Zhang J M, Liu D B, et al. Advanced Energy Materials, 2020, 10(43), 2002215.
5 Zhang L J, Cai W W, Bao N Z. Advanced Materials, 2021, 33(22), 2100745.
6 Ma X Z, Wen J, Zhang S, et al. ACS Sustainable Chemistry and Engineering, 2017, 5(11), 10266.
7 Li H, Wen P, Li Q, et al. Advanced Energy Materials, 2017, 7(17), 1700513.
8 Medway S L, Lucas C A, Kowal A, et al. Journal of Electroanalytical Chemistry, 2006, 587(1), 172.
9 Das A, Mohapatra B, Kamboj V, et al. ChemCatChem, 2021, 13(8), 2053.
10 Sharma L, Katiyar N K, Parui A, et al. Nano Research, 2021, 15, 4799.
11 Dai W J, Lu T, Pan Y. Journal of Power Sources, 2019, 430, 104.
12 Ding Z Y, Bian J J, Shuang S, et al. Advanced Sustainable Systems, 2020, 4(5),1900105.
13 Li X M, Hu Q Y, Wang H Y, et al. Applied Catalysis B: Environmental, 2021, 292, 120172.
14 Ding Z Y, Bian J J, Shuang S, et al. Advanced Sustainable Systems, 2020, 4(5), 1900105.
15 Qiu Y L, Zhang X Y, Han H, et al. Journal of Power Sources, 2021, 499, 229941.
16 Zai S F, Zhou Y T, Yang C C, et al. Chemical Engineering Journal, 2021, 421, 127856.
17 Wu L B, Yu L, McElhenny B, et al. Applied Catalysis B: Environmental, 2021, 294, 120256.
18 Wang G L, Cao D X, Yin C L, et al. ChemInform, 2009, 21(21), 5112.
19 Hu Y M, Wang Z L, Liu W J, et al. ACS Sustainable Chemistry and Engineering, 2019, 7(19), 16828.
20 Zhang N, Feng X B, Rao D W, et al. Nature Communications, 2020, 11(1), 1.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[3] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[4] 陈瑞润, 陈秀刚, 高雪峰, 秦刚, 宋强, 崔洪芝. 原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能[J]. 材料导报, 2022, 36(14): 22050073-6.
[5] 修明清, 李天昕, 张国家, 邹龙江, 卢一平. 谐波异质结构AlCoCrFeNi高熵合金的制备、组织演化与力学性能[J]. 材料导报, 2022, 36(14): 22030309-5.
[6] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[7] 赵堃, 孛海娃, 艾桃桃, 廖仲尼, 丁镠, 冯小明. 非等原子Alx(FeCoNiCr)88-xMn12高熵合金的微观组织及力学性能[J]. 材料导报, 2022, 36(14): 22040007-7.
[8] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[9] 常超, 张辉, 来媛, 李良, 白晓旭. FeAlNiCrMn高熵合金结构稳定性和力学性能的第一性原理计算[J]. 材料导报, 2022, 36(14): 21040230-5.
[10] 王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
[11] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[12] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[13] 侯丽丽, 郭强, 要玉宏, 刘江南. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.
[14] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[15] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed